Решение пределов примеры с объяснением. Первый замечательный предел

Пределы доставляют всем студентам, изучающим математику, немало хлопот. Чтобы решить предел, порой приходится применять массу хитростей и выбирать из множества способов решения именно тот, который подойдет для конкретного примера.

В этой статье мы не поможем вам понять пределы своих возможностей или постичь пределы контроля, но постараемся ответить на вопрос: как понять пределы в высшей математике? Понимание приходит с опытом, поэтому заодно приведем несколько подробных примеров решения пределов с пояснениями.

Понятие предела в математике

Первый вопрос: что это вообще за предел и предел чего? Можно говорить о пределах числовых последовательностей и функций. Нас интересует понятие предела функции, так как именно с ними чаще всего сталкиваются студенты. Но сначала - самое общее определение предела:

Допустим, есть некоторая переменная величина. Если эта величина в процессе изменения неограниченно приближается к определенному числу a , то a – предел этой величины.

Для определенной в некотором интервале функции f(x)=y пределом называется такое число A , к которому стремится функция при х , стремящемся к определенной точке а . Точка а принадлежит интервалу, на котором определена функция.

Звучит громоздко, но записывается очень просто:

Lim - от английского limit - предел.

Существует также геометрическое объяснение определения предела, но здесь мы не будем лезть в теорию, так как нас больше интересует практическая, нежели теоретическая сторона вопроса. Когда мы говорим, что х стремится к какому-то значению, это значит, что переменная не принимает значение числа, но бесконечно близко к нему приближается.

Приведем конкретный пример. Задача - найти предел.

Чтобы решить такой пример, подставим значение x=3 в функцию. Получим:

Кстати, если Вас интересуют , читайте отдельную статью на эту тему.

В примерах х может стремиться к любому значению. Это может быть любое число или бесконечность. Вот пример, когда х стремится к бесконечности:

Интуитивно понятно, что чем больше число в знаменателе, тем меньшее значение будет принимать функция. Так, при неограниченном росте х значение 1/х будет уменьшаться и приближаться к нулю.

Как видим, чтобы решить предел, нужно просто подставить в функцию значение, к которому стремиться х . Однако это самый простой случай. Часто нахождение предела не так очевидно. В пределах встречаются неопределенности типа 0/0 или бесконечность/бесконечность . Что делать в таких случаях? Прибегать к хитростям!


Неопределенности в пределах

Неопределенность вида бесконечность/бесконечность

Пусть есть предел:

Если мы попробуем в функцию подставить бесконечность, то получим бесконечность как в числителе, так и в знаменателе. Вообще стоит сказать, что в разрешении таких неопределенностей есть определенный элемент искусства: нужно заметить, как можно преобразовать функцию таким образом, чтобы неопределенность ушла. В нашем случае разделим числитель и знаменатель на х в старшей степени. Что получится?

Из уже рассмотренного выше примера мы знаем, что члены, содержащие в знаменателе х, будут стремиться к нулю. Тогда решение предела:

Для раскрытия неопределенностей типа бесконечность/бесконечность делим числитель и знаменатель на х в высшей степени.


Кстати! Для наших читателей сейчас действует скидка 10% на

Еще один вид неопределенностей: 0/0

Как всегда, подстановка в функцию значения х=-1 дает 0 в числителе и знаменателе. Посмотрите чуть внимательнее и Вы заметите, что в числителе у нас квадратное уравнение. Найдем корни и запишем:

Сократим и получим:

Итак, если Вы сталкиваетесь с неопределенностью типа 0/0 – раскладывайте числитель и знаменатель на множители.

Чтобы Вам было проще решать примеры, приведем таблицу с пределами некоторых функций:

Правило Лопиталя в пределах

Еще один мощный способ, позволяющий устранить неопределенности обоих типов. В чем суть метода?

Если в пределе есть неопределенность, берем производную от числителя и знаменателя до тех пор, пока неопределенность не исчезнет.

Наглядно правило Лопиталя выглядит так:

Важный момент : предел, в котором вместо числителя и знаменателя стоят производные от числителя и знаменателя, должен существовать.

А теперь – реальный пример:

Налицо типичная неопределенность 0/0 . Возьмем производные от числителя и знаменателя:

Вуаля, неопределенность устранена быстро и элегантно.

Надеемся, что Вы сможете с пользой применить эту информацию на практике и найти ответ на вопрос "как решать пределы в высшей математике". Если нужно вычислить предел последовательности или предел функции в точке, а времени на эту работу нет от слова «совсем», обратитесь в профессиональный студенческий сервис за быстрым и подробным решением.

Из вышеуказанной статьи Вы сможете узнать, что же такое предел, и с чем его едят – это ОЧЕНЬ важно. Почему? Можно не понимать, что такое определители и успешно их решать, можно совершенно не понимать, что такое производная и находить их на «пятёрку». Но вот если Вы не понимаете, что такое предел, то с решением практических заданий придется туго. Также не лишним будет ознакомиться с образцами оформления решений и моими рекомендациями по оформлению. Вся информация изложена в простой и доступной форме.

А для целей данного урока нам потребуются следующие методические материалы: Замечательные пределы и Тригонометрические формулы . Их можно найти на странице . Лучше всего методички распечатать – это значительно удобнее, к тому же к ним часто придется обращаться в оффлайне.

Чем же замечательны замечательные пределы? Замечательность данных пределов состоит в том, что они доказаны величайшими умами знаменитых математиков, и благодарным потомкам не приходится мучаться страшными пределами с нагромождением тригонометрических функций, логарифмов, степеней. То есть при нахождении пределов мы будем пользоваться готовыми результатами, которые доказаны теоретически.

Замечательных пределов существует несколько, но на практике у студентов-заочников в 95% случаев фигурируют два замечательных предела: Первый замечательный предел , Второй замечательный предел . Следует отметить, что это исторически сложившиеся названия, и, когда, например, говорят о «первом замечательном пределе», то подразумевают под этим вполне определенную вещь, а не какой-то случайный, взятый с потолка предел.

Первый замечательный предел

Рассмотрим следующий предел: (вместо родной буквы «хэ» я буду использовать греческую букву «альфа», это удобнее с точки зрения подачи материала).

Согласно нашему правилу нахождения пределов (см. статью Пределы. Примеры решений ) пробуем подставить ноль в функцию: в числителе у нас получается ноль (синус нуля равен нулю), в знаменателе, очевидно, тоже ноль. Таким образом, мы сталкиваемся с неопределенностью вида , которую, к счастью, раскрывать не нужно. В курсе математического анализа, доказывается, что:

Данный математический факт носит название Первого замечательного предела . Аналитическое доказательство предела приводить не буду, а вот его геометрический смысл рассмотрим на уроке о бесконечно малых функциях .

Нередко в практических заданиях функции могут быть расположены по-другому, это ничего не меняет:

– тот же самый первый замечательный предел.

Но самостоятельно переставлять числитель и знаменатель нельзя! Если дан предел в виде , то и решать его нужно в таком же виде, ничего не переставляя.

На практике в качестве параметра может выступать не только переменная , но и элементарная функция, сложная функция. Важно лишь, чтобы она стремилась к нулю .

Примеры:
, , ,

Здесь , , , , и всё гуд – первый замечательный предел применим.

А вот следующая запись – ересь:

Почему? Потому что многочлен не стремится к нулю, он стремится к пятерке.

Кстати, вопрос на засыпку, а чему равен предел ? Ответ можно найти в конце урока.

На практике не все так гладко, почти никогда студенту не предложат решить халявный предел и получить лёгкий зачет. Хммм… Пишу эти строки, и пришла в голову очень важная мысль – все-таки «халявные» математические определения и формулы вроде лучше помнить наизусть, это может оказать неоценимую помощь на зачете, когда вопрос будет решаться между «двойкой» и «тройкой», и преподаватель решит задать студенту какой-нибудь простой вопрос или предложить решить простейший пример («а может он (а) все-таки знает чего?!»).

Переходим к рассмотрению практических примеров:

Пример 1

Найти предел

Если мы замечаем в пределе синус, то это нас сразу должно наталкивать на мысль о возможности применения первого замечательного предела.

Сначала пробуем подставить 0 в выражение под знак предела (делаем это мысленно или на черновике):

Итак, у нас есть неопределенность вида , ее обязательно указываем в оформлении решения. Выражение под знаком предела у нас похоже на первый замечательный предел, но это не совсем он, под синусом находится , а в знаменателе .

В подобных случаях первый замечательный предел нам нужно организовать самостоятельно, используя искусственный прием. Ход рассуждений может быть таким: «под синусом у нас , значит, в знаменателе нам тоже нужно получить ».
А делается это очень просто:

То есть, знаменатель искусственно умножается в данном случае на 7 и делится на ту же семерку. Теперь запись у нас приняла знакомые очертания.
Когда задание оформляется от руки, то первый замечательный предел желательно пометить простым карандашом:


Что произошло? По сути, обведенное выражение у нас превратилось в единицу и исчезло в произведении:

Теперь только осталось избавиться от трехэтажности дроби:

Кто позабыл упрощение многоэтажных дробей, пожалуйста, освежите материал в справочнике Горячие формулы школьного курса математики .

Готово. Окончательный ответ:

Если не хочется использовать пометки карандашом, то решение можно оформить так:



Используем первый замечательный предел

Пример 2

Найти предел

Опять мы видим в пределе дробь и синус. Пробуем подставить в числитель и знаменатель ноль:

Действительно, у нас неопределенность и, значит, нужно попытаться организовать первый замечательный предел. На уроке Пределы. Примеры решений мы рассматривали правило, что когда у нас есть неопределенность , то нужно разложить числитель и знаменатель на множители. Здесь – то же самое, степени мы представим в виде произведения (множителей):

Аналогично предыдущему примеру, обводим карандашом замечательные пределы (здесь их два), и указываем, что они стремятся к единице:

Собственно, ответ готов:

В следующих примерах, я не буду заниматься художествами в Пэйнте, думаю, как правильно оформлять решение в тетради – Вам уже понятно.

Пример 3

Найти предел

Подставляем ноль в выражение под знаком предела:

Получена неопределенность , которую нужно раскрывать. Если в пределе есть тангенс, то почти всегда его превращают в синус и косинус по известной тригонометрической формуле (кстати, с котангенсом делают примерно то же самое, см. методический материал Горячие тригонометрические формулы на странице Математические формулы, таблицы и справочные материалы ).

В данном случае:

Косинус нуля равен единице, и от него легко избавиться (не забываем пометить, что он стремится к единице):

Таким образом, если в пределе косинус является МНОЖИТЕЛЕМ, то его, грубо говоря, нужно превратить в единицу, которая исчезает в произведении.

Здесь все вышло проще, без всяких домножений и делений. Первый замечательный предел тоже превращается в единицу и исчезает в произведении:

В итоге получена бесконечность, бывает и такое.

Пример 4

Найти предел

Пробуем подставить ноль в числитель и знаменатель:

Получена неопределенность (косинус нуля, как мы помним, равен единице)

Используем тригонометрическую формулу . Возьмите на заметку! Пределы с применением этой формулы почему-то встречаются очень часто.

Постоянные множители вынесем за значок предела:

Организуем первый замечательный предел:


Здесь у нас только один замечательный предел, который превращается в единицу и исчезает в произведении:

Избавимся от трехэтажности:

Предел фактически решен, указываем, что оставшийся синус стремится к нулю:

Пример 5

Найти предел

Этот пример сложнее, попробуйте разобраться самостоятельно:

Некоторые пределы можно свести к 1-му замечательному пределу путём замены переменной, об этом можно прочитать чуть позже в статье Методы решения пределов .

Второй замечательный предел

В теории математического анализа доказано, что:

Данный факт носит название второго замечательного предела .

Справка: – это иррациональное число.

В качестве параметра может выступать не только переменная , но и сложная функция. Важно лишь, чтобы она стремилась к бесконечности .

Пример 6

Найти предел

Когда выражение под знаком предела находится в степени – это первый признак того, что нужно попытаться применить второй замечательный предел.

Но сначала, как всегда, пробуем подставить бесконечно большое число в выражение , по какому принципу это делается, разобрано на уроке Пределы. Примеры решений .

Нетрудно заметить, что при основание степени , а показатель – , то есть имеется, неопределенность вида :

Данная неопределенность как раз и раскрывается с помощью второго замечательного предела. Но, как часто бывает, второй замечательный предел не лежит на блюдечке с голубой каемочкой, и его нужно искусственно организовать. Рассуждать можно следующим образом: в данном примере параметр , значит, в показателе нам тоже нужно организовать . Для этого возводим основание в степень , и, чтобы выражение не изменилось – возводим в степень :

Когда задание оформляется от руки, карандашом помечаем:


Практически всё готово, страшная степень превратилась в симпатичную букву :

При этом сам значок предела перемещаем в показатель :

Пример 7

Найти предел

Внимание! Предел подобного типа встречается очень часто, пожалуйста, очень внимательно изучите данный пример.

Пробуем подставить бесконечно большое число в выражение, стоящее под знаком предела:

В результате получена неопределенность . Но второй замечательный предел применим к неопределенности вида . Что делать? Нужно преобразовать основание степени. Рассуждаем так: в знаменателе у нас , значит, в числителе тоже нужно организовать .

Функцией y = f(x) называется закон (правило), согласно которому, каждому элементу x множества X ставится в соответствие один и только один элемент y множества Y .

Элемент x ∈ X называют аргументом функции или независимой переменной .
Элемент y ∈ Y называют значением функции или зависимой переменной .

Множество X называется областью определения функции .
Множество элементов y ∈ Y , которые имеют прообразы в множестве X , называется областью или множеством значений функции .

Действительная функция называется ограниченной сверху (снизу) , если существует такое число M , что для всех выполняется неравенство:
.
Числовая функция называется ограниченной , если существует такое число M , что для всех :
.

Верхней гранью или точной верхней границей действительной функции называют наименьшее из чисел, ограничивающее область ее значений сверху. То есть это такое число s , для которого для всех и для любого , найдется такой аргумент , значение функции от которого превосходит s′ : .
Верхняя грань функции может обозначаться так:
.

Соответственно нижней гранью или точной нижней границей действительной функции называют наибольшее из чисел, ограничивающее область ее значений снизу. То есть это такое число i , для которого для всех и для любого , найдется такой аргумент , значение функции от которого меньше чем i′ : .
Нижняя грань функции может обозначаться так:
.

Определение предела функции

Определение предела функции по Коши

Конечные пределы функции в конечных точках

Пусть функция определена в некоторой окрестности конечной точки за исключением, может быть, самой точки . в точке , если для любого существует такое , зависящее от , что для всех x , для которых , выполняется неравенство
.
Предел функции обозначается так:
.
Или при .

С помощью логических символов существования и всеобщности определение предела функции можно записать следующим образом:
.

Односторонние пределы.
Левый предел в точке (левосторонний предел):
.
Правый предел в точке (правосторонний предел):
.
Пределы слева и справа часто обозначают так:
; .

Конечные пределы функции в бесконечно удаленных точках

Аналогичным образом определяются пределы в бесконечно удаленных точках.
.
.
.
Их часто обозначают так:
; ; .

Использование понятия окрестности точки

Если ввести понятие проколотой окрестности точки , то можно дать единое определение конечного предела функции в конечных и бесконечно удаленных точках:
.
Здесь для конечных точек
; ;
.
Любые окрестности бесконечно удаленных точек являются проколотыми:
; ; .

Бесконечные пределы функции

Определение
Пусть функция определена в некоторой проколотой окрестности точки (конечной или бесконечно удаленной). Предел функции f(x) при x → x 0 равен бесконечности , если для любого, сколь угодно большого числа M > 0 , существует такое число δ M > 0 , зависящее от M , что для всех x , принадлежащих проколотой δ M - окрестности точки : , выполняется неравенство:
.
Бесконечный предел обозначают так:
.
Или при .

С помощью логических символов существования и всеобщности определение бесконечного предела функции можно записать так:
.

Также можно ввести определения бесконечных пределов определенных знаков, равных и :
.
.

Универсальное определение предела функции

Используя понятие окрестности точки, можно дать универсальное определение конечного и бесконечно предела функции, применимое как для конечных (двусторонних и односторонних), так и для бесконечно удаленных точек:
.

Определение предела функции по Гейне

Пусть функция определена на некотором множестве X : .
Число a называется пределом функции в точке :
,
если для любой последовательности , сходящейся к x 0 :
,
элементы которой принадлежат множеству X : ,
.

Запишем это определение с помощью логических символов существования и всеобщности:
.

Если в качестве множества X взять левостороннюю окрестность точки x 0 , то получим определение левого предела. Если правостороннюю - то получим определение правого предела. Если в качестве множества X взять окрестность бесконечно удаленной точки, то получим определение предела функции на бесконечности.

Теорема
Определения предела функции по Коши и по Гейне эквивалентны.
Доказательство

Свойства и теоремы предела функции

Далее мы считаем, что рассматриваемые функции определены в соответствующей окрестности точки , которая является конечным числом или одним из символов: . Также может быть точкой одностороннего предела, то есть иметь вид или . Окрестность является двусторонней для двустороннего предела и односторонней для одностороннего.

Основные свойства

Если значения функции f(x) изменить (или сделать неопределенными) в конечном числе точек x 1 , x 2 , x 3 , ... x n , то это изменение никак не повлияет на существование и величину предела функции в произвольной точке x 0 .

Если существует конечный предел , то существует такая проколотая окрестность точки x 0 , на которой функция f(x) ограничена:
.

Пусть функция имеет в точке x 0 конечный предел, отличный от нуля:
.
Тогда, для любого числа c из интервала , существует такая проколотая окрестность точки x 0 , что для ,
, если ;
, если .

Если, на некоторой проколотой окрестности точки , - постоянная, то .

Если существуют конечные пределы и и на некоторой проколотой окрестности точки x 0
,
то .

Если , и на некоторой окрестности точки
,
то .
В частности, если на некоторой окрестности точки
,
то если , то и ;
если , то и .

Если на некоторой проколотой окрестности точки x 0 :
,
и существуют конечные (или бесконечные определенного знака) равные пределы:
, то
.

Доказательства основных свойств приведены на странице
«Основные свойства пределов функции ».

Арифметические свойства предела функции

Пусть функции и определены в некоторой проколотой окрестности точки . И пусть существуют конечные пределы:
и .
И пусть C - постоянная, то есть заданное число. Тогда
;
;
;
, если .

Если , то .

Доказательства арифметических свойств приведены на странице
«Арифметические свойства пределов функции ».

Критерий Коши существования предела функции

Теорема
Для того, чтобы функция , определенная на некоторой проколотой окрестности конечной или бесконечно удаленной точки x 0 , имела в этой точке конечный предел, необходимо и достаточно, чтобы для любого ε > 0 существовала такая проколотая окрестность точки x 0 , что для любых точек и из этой окрестности, выполнялось неравенство:
.

Предел сложной функции

Теорема о пределе сложной функции
Пусть функция имеет предел и отображает проколотую окрестность точки на проколотую окрестность точки . Пусть функция определена на этой окрестности и имеет на ней предел .
Здесь - конечные или бесконечно удаленные точки: . Окрестности и соответствующие им пределы могут быть как двусторонние, так и односторонние.
Тогда существует предел сложной функции и он равен :
.

Теорема о пределе сложной функции применяется в том случае, когда функция не определена в точке или имеет значение, отличное от предельного . Для применения этой теоремы, должна существовать проколотая окрестность точки , на которой множество значений функции не содержит точку :
.

Если функция непрерывна в точке , то знак предела можно применять к аргументу непрерывной функции:
.
Далее приводится теорема, соответствующая этому случаю.

Теорема о пределе непрерывной функции от функции
Пусть существует предел функции g(t) при t → t 0 , и он равен x 0 :
.
Здесь точка t 0 может быть конечной или бесконечно удаленной: .
И пусть функция f(x) непрерывна в точке x 0 .
Тогда существует предел сложной функции f(g(t)) , и он равен f(x 0) :
.

Доказательства теорем приведены на странице
«Предел и непрерывность сложной функции ».

Бесконечно малые и бесконечно большие функции

Бесконечно малые функции

Определение
Функция называется бесконечно малой при , если
.

Сумма, разность и произведение конечного числа бесконечно малых функций при является бесконечно малой функцией при .

Произведение функции, ограниченной на некоторой проколотой окрестности точки , на бесконечно малую при является бесконечно малой функцией при .

Для того, чтобы функция имела конечный предел , необходимо и достаточно, чтобы
,
где - бесконечно малая функция при .


«Свойства бесконечно малых функций ».

Бесконечно большие функции

Определение
Функция называется бесконечно большой при , если
.

Сумма или разность ограниченной функции, на некоторой проколотой окрестности точки , и бесконечно большой функции при является бесконечно большой функцией при .

Если функция является бесконечно большой при , а функция - ограничена, на некоторой проколотой окрестности точки , то
.

Если функция , на некоторой проколотой окрестности точки , удовлетворяет неравенству:
,
а функция является бесконечно малой при :
, и (на некоторой проколотой окрестности точки ), то
.

Доказательства свойств изложены в разделе
«Свойства бесконечно больших функций ».

Связь между бесконечно большими и бесконечно малыми функциями

Из двух предыдущих свойств вытекает связь между бесконечно большими и бесконечно малыми функциями.

Если функция являются бесконечно большой при , то функция является бесконечно малой при .

Если функция являются бесконечно малой при , и , то функция является бесконечно большой при .

Связь между бесконечно малой и бесконечно большой функцией можно выразить символическим образом:
, .

Если бесконечно малая функция имеет определенный знак при , то есть положительна (или отрицательна) на некоторой проколотой окрестности точки , то этот факт можно выразить так:
.
Точно также если бесконечно большая функция имеет определенный знак при , то пишут:
.

Тогда символическую связь между бесконечно малыми и бесконечно большими функциями можно дополнить следующими соотношениями:
, ,
, .

Дополнительные формулы, связывающие символы бесконечности, можно найти на странице
«Бесконечно удаленные точки и их свойства ».

Пределы монотонных функций

Определение
Функция , определенная на некотором множестве действительных чисел X называется строго возрастающей , если для всех таких что выполняется неравенство:
.
Соответственно, для строго убывающей функции выполняется неравенство:
.
Для неубывающей :
.
Для невозрастающей :
.

Отсюда следует, что строго возрастающая функция также является неубывающей. Строго убывающая функция также является невозрастающей.

Функция называется монотонной , если она неубывающая или невозрастающая.

Теорема
Пусть функция не убывает на интервале , где .
Если она ограничена сверху числом M : , то существует конечный предел . Если не ограничена сверху, то .
Если ограничена снизу числом m : , то существует конечный предел . Если не ограничена снизу, то .

Если точки a и b являются бесконечно удаленными, то в выражениях под знаками пределов подразумевается, что .
Эту теорему можно сформулировать более компактно.

Пусть функция не убывает на интервале , где . Тогда существуют односторонние пределы в точках a и b :
;
.

Аналогичная теорема для невозрастающей функции.

Пусть функция не возрастает на интервале , где . Тогда существуют односторонние пределы:
;
.

Доказательство теоремы изложено на странице
«Пределы монотонных функций ».

Использованная литература:
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

Решение задач на нахождение пределов При решении задач на отыскание пределов следует помнить некоторые пределы, чтобы каждый раз не вычислять их заново. Комбинируя эти известные пределы, будем находить при помощи свойств, указанных в § 4, новые пределы. Для удобства приведем наиболее часто встречающиеся пре делы: Пределы 1 lim х - а х а 2 lim 1 = 0 3 lim х- ± со X ± 00 4 lim -L, = оо Х->о\Х\ 5 lim sin*-l X -о X 6 lim f(x) = f(a), если f (x) непрерывна x a Если известно, что функция непрерывна, то вместо нахождения предела вычисляем значение функции. Пример 1. Найти lim (х*-6л:+ 8). Так как много- Х->2 член-функция непрерывная, то lim (х*-6x4- 8) = 2*-6-2 + 8 = 4. х-+2 х*_2х 4-1 Пример 2. Найти lim -г. . Сначала находим пре- Х-+1 х ~гъх дел знаменателя: lim [хг-\-Ъх)= 12 + 5-1 =6; он не равен Х-У1 нулю, значит, можно применить свойство 4 § 4, тогда x™i *" + &* ~~ lim {х2 Ъх) - 12 + 5-1 ""6 1 . Предел знаменателя X X равен нулю, поэтому свойство 4 § 4 применить нельзя. Так как числитель-постоянное число, а знаменатель [х2х)->-0 при х--1, то вся дробь неограниченно возрастает по абсолютной величине, т. е. lim " 1 Х-*- - 1 х* + х Пример 4. Найти lim \-ll*"!"» « Предел знаменателя равен нулю: lim (хг-6лг+ 8) = 2*-6-2 + 8 = 0, поэтому X свойство 4 § 4 неприменимо. Но предел числителя тоже равен нулю: lim (х2 - 5д; + 6) = 22 - 5-2-f 6 = 0. Итак, пре- делы числителя и знаменателя одновременно равны нулю. Однако число 2 является корнем и числителя и знаменателя, поэтому дробь можно сократить на разность х-2 (по теореме Безу). В самом деле, х*-5х + 6 (х-2) (х-3) х-3 х"-6х + 8~ (х-2) (х-4) ~~ х-4 " следовательно, хг--f- 6 г х-3 -1 1 Пример 5. Найти lim хп (п целое, положительное). X со Имеем хп = X* X . . X, п раз Так как каждый множитель неограниченно растет, то и произведение также неограниченно растет, т. е. lim хп=оо. х оо Пример 6. Найти lim хп(п целое, положительное). X -> - СО Имеем хп = х х... х. Так как каждый множитель растет по абсолютной величине, оставаясь отрицательным, то в случае четной степени произведение будет неограниченно расти, оставаясь положительным, т. е. lim *п= + оо (при п четном). *-* -со В случае нечетной степени абсолютная величина произведения растет, но оно остается отрицательным, т. е. lim хп =- оо (при п нечетном). п -- 00 Пример 7. Найти lim . х х-*- со * Если т>пу то можно написать: m = n + kt где k>0. Поэтому хт Ь lim -=- = lim -=-= lim x . уП Yn х -х> А х ю Пришли к примеру 6. Если же ти уТЛ xm I lim lim lim т. X - О х-* ю Л X ->со Здесь числитель остается постоянным, а знаменатель растет по абсолютной величине, поэтому lim -ь = 0. Х-*оо X* Результат этого примера рекомендуется запомнить в следующем виде: Степенная функция растет тем быстрее, чем больше показатель степени. $хв_Зхг + 7 Пример 8. Найти lim g L -г-=.В этом примере х-*® «J* "Г ЬХ -ох-о и числитель и знаменатель неограниченно возрастают. Разделим и числитель и знаменатель на старшую степень х, т. е. на хв, тогда 3 7_ Пример 9. Найти lira . Совершая преобразова- * г ^ ния, получим lira . . ^ = lim X СО + 3 7 3 Так как lim -5 = 0, lim -, = 0, то предел знаменателя раде-*® Х X-+-CD Х вен нулю, в то время как предел числителя равен 1. Следовательно, вся дробь неограниченно возрастает, т. е. t. 7х hm Х-+ ю Пример 10. Найти lim Вычислим предел S знаменателя, помня, что cos*-функция непрерывная: lira (2 +cos x) = 2 + cosy =2. Тогда х->- S lim (l-fsin*) Пример 15. Найдем lim *<*-e>2 и lim е"(Х"а)\ Поло- Х-+ ± со X ± СО жим (л: - a)2 = z; так как (л;-а)2 всегда неотрицательно и неограниченно растет вместе с х, то при х- ±оо новое переменное z-*ос. Поэтому получаем цт £<*-«)* = X -> ± 00 s=lim ег = оо (см. замечание к §5). г -*■ со Аналогично lim е~(Х-а)2 = lim e~z=Q, так как х ± оо г м - (х- а)г неограниченно убывает при х->±оо (см. замечание к §

Тема 4.6.Вычисление пределов

Предел функции не зависит от того, определена она в предельной точке или нет. Но в практике вычисления пределов элементарных функций это обстоятельство имеет существенное значение.

1. Если функция является элементарной и если предельное значение аргумента принадлежит ее области определения, то вычисление предела функции сводится к простой подстановке предельного значения аргумента, т.к. предел элементарной функции f (x) при х стремящемся к а , которое входит в область определения, равен частному значению функции при х=а , т.е. lim f(x)=f(a ) .

2. Если х стремится к бесконечности или аргумент стремится к числу, которое не принадлежит области определения функции, то в каждом таком случае нахождение предела функции требует специального исследования.

Ниже приведены простейшие пределы, основанные на свойствах пределов, которые можно использовать как формулы:

Более сложные случаи нахождения предела функции:

рассматриваются каждый в отдельности.

В этом разделе будут приведены основные способы раскрытия неопределенностей.

1. Случай, когда при х стремящемся к а функция f (x) представляет отношение двух бесконечно малых величин

а) Сначала нужно убедится, что предел функции нельзя найти непосредственной подстановкой и при указанном изменении аргумента она представляет отношение двух бесконечно малых величин. Делаются преобразования, чтобы сократить дробь на множитель, стремящийся к 0. Согласно определению предела функции аргумент х стремится к своему предельному значению, никогда с ним не совпадая.

Вообще если ищется предел функции при х стремящемся к а , то необходимо помнить, что х не принимает значения а , т.е. х не равен а.

б) Применяется теорема Безу. Если ищется предел дроби, числитель и знаменатель которой многочлены, обращающиеся в 0 в предельной точке х=а , то согласно вышеназванной теореме оба многочлена делятся без остатка на х-а .

в) Уничтожается иррациональность в числителе или в знаменателе путем умножения числителя или знаменателя на сопряженное к иррациональному выражение, затем после упрощения дробь сокращается.

г) Используется 1-й замечательный предел (4.1).

д) Используется теорема об эквивалентности бесконечно малых и следующие б.м.:

2. Случай, когда при х стремящемся к а функция f (x) представляет отношение двух бесконечно больших величин

а) Деление числителя и знаменателя дроби на наивысшую степень неизвестного.

б) В общем случае можно использовать правило

3. Случай, когда при х стремящемся к а функция f (x) представляет произведение бесконечно малой величины на бесконечно большую

Дробь преобразовывается к виду, числитель и знаменатель которой одновременно стремятся к 0 или к бесконечности, т.е. случай 3 сводится к случаю 1 или случаю 2.

4. Случай, когда при х стремящемся к а функция f (x) представляет разность двух положительных бесконечно больших величин

Этот случай сводится к виду 1 или 2 одним из следующих способов:

а) приведение дробей к общему знаменателю;

б) преобразование функции к виду дроби;

в) избавление от иррациональности.

5. Случай, когда при х стремящемся к а функция f (x) представляет степень, основание которой стремится к 1, а показатель к бесконечности.

Функция преобразовывается таким образом, чтобы использовать 2-й замечательный предел (4.2).

Пример. Найти .

Так как х стремится к 3 , то числитель дроби стремится к числу 3 2 +3 *3+4=22, а знаменатель- к числу 3+8=11. Следовательно,

Пример

Здесь числитель и знаменатель дроби при х стремящемся к 2 стремятся к 0 (неопределенность вида), разложим числитель и знаменатель на множители, получим lim(x-2)(x+2)/(x-2)(x-5)

Пример

Умножим числитель и знаменатель на выражение, сопряженное к числителю, имеем

Раскрываем скобки в числителе, получим

Пример

Уровень 2. Пример. Приведем пример применения понятия предела функции в экономических расчетах. Рассмотрим обыкновенную финансовую сделку: предоставление в долг суммы S 0 с условием, что через период времени T будет возвращена сумма S T . Определим величину r относительного роста формулой

r=(S T -S 0)/S 0 (1)

Относительный рост можно выразить в процентах, умножив полученное значение r на 100.

Из формулы (1) легко определить величину S T :

S T = S 0 (1 + r )

При расчете по долгосрочным кредитам, охватывающим несколько полных лет, используют схему сложных процентов. Она состоит в том, что если за 1-й год сумма S 0 возрастает в (1 + r ) раз, то за второй год в (1 + r ) раз возрастает сумма S 1 = S 0 (1 + r ), то есть S 2 = S 0 (1 + r ) 2 . Аналогично получается S 3 = S 0 (1 + r ) 3 . Из приведенных примеров можно вывести общую формулу для вычисления роста суммы за n лет при расчете по схеме сложных процентов:

S n = S 0 (1 + r ) n .

В финансовых расчетах применяются схемы, где начисление сложных процентов производится несколько раз в году. При этом оговариваются годовая ставка r и количество начислений за год k . Как правило, начисления производятся через равные промежутки времени, то есть длина каждого промежутка T k составляет часть года. Тогда для срока в T лет (здесь T не обязательно является целым числом) сумма S T рассчитывается по формуле

(2)

где - целая часть числа, которая совпадает с самим числом, если, например, T ? целое число.

Пусть годовая ставка равна r и производится n начислений в год через равные промежутки времени. Тогда за год сумма S 0 наращивается до величины, определяемой формулой

(3)

В теоретическом анализе и в практике финансовой деятельности часто встречается понятие “непрерывно начисляемый процент”. Чтобы перейти к непрерывно начисляемому проценту, нужно в формулах (2) и (3) неограниченно увеличивать соответственно, числа k и n (то есть устремить k и n к бесконечности) и вычислить, к какому пределу будут стремиться функции S T и S 1 . Применим эту процедуру к формуле(3):

Заметим, что предел в фигурных скобках совпадает со вторым замечательным пределом. Отсюда следует, что при годовой ставке r при непрерывно начисляемом проценте сумма S 0 за 1 год наращивается до величины S 1 * , которая определяется из формулы

S 1 * = S 0 e r (4)

Пусть теперь сумма S 0 предоставляется в долг с начислением процента n раз в год через равные промежутки времени. Обозначим r e годовую ставку, при которой в конце года сумма S 0 наращивается до величины S 1 * из формулы (4). В этом случае будем говорить, что r e - это годовая ставка при начислении процента n раз в год, эквивалентная годовому проценту r при непрерывном начислении. Из формулы (3) получаем

S* 1 =S 0 (1+r e /n) n

Приравнивая правые части последней формулы и формулы (4), полагая в последней T = 1, можно вывести соотношения между величинами r и r e :

Эти формулы широко используются в финансовых расчётах.

В продолжение темы:
Ленточный фундамент

Спагетти с соусом из рыбной консервы — этот недорогой рецепт мы увидели на пачке купленных нами спагетти. Рецепт показался нам очень простым, ну и мы решили попробовать...

Новые статьи
/
Популярные