Ветрогенератор с вертикальным ротором. Ветрогенераторы с вертикальной осью вращения российского производства Профиль лопастей ветрогенератора с вертикальным ротором

Вы когда-нибудь думали о том, чтобы использовать дармовой и бесполезный, казалось бы, ветер для хозяйственных нужд? Ведь давно известно, что природная энергия дается нам даром и было бы странно, если бы мы не пытались использовать ее для себя! В этой статье автор не предлагает создавать старинные ветряные мельницы, или какой-нибудь фантастический двигатель на космическом ветре. Но вот построить ветрогенератор, причем необычный, с вертикальной осью вращения, который будет вырабатывать электричество, и с довольно с хорошей мощностью – дело достижимое своими руками. Идея вертикального ветрогенератора вполне реальная, ее могут реализовать даже начинающие мастера, живущие в деревне, или имеющие садовый дом за городом. А для школьной мастерской этот несложный ветряной генератор – настоящая находка, которая будет развивать технические умения у школьников и пробуждать таланты, которые стандартной школьной программы не всегда могут быть раскрыты. Такое устройство будет украшать школьный двор, а лопасти этого красивого ветрогенератора при ветре будут вращаться, привлекая внимание школьников и прохожих, пробуждая интерес к техническому творчеству.

Готовые китайские ветрогенераторы и детали для сборки в этом китайском магазине .

Мощность и конструкция вертикального ветряка

Электричество, которое можно получить с помощью этой ветроустановки с вертикальной осью, достаточно, чтобы питать насос для поливки огорода, дать освещение в школьном классе или в комнате жилого дома. Если бы была возможность хотя бы в 20 процентах домах иметь такую бесплатную маленькую ветряную электростанцию, вы можете себе представить, сколько можно было бы сэкономить киловатт-часов и разгрузить электрические сети нашей страны!

Вертикальный ветрогенератор состоит из двух частей, представляющих собой половины полого цилиндра, которые способны расходиться. Созданный таким образом объект имеет четкую аэродинамическую не симметричность. Воздух, который надвигается поперек оси вращения устройства, соскальзывает с наружной стороны первой половины цилиндра. А другая сторона, которая направлена в другую сторону, является для ветра препятствием. Такое соотношение приводит к тому, что барабан начинает вращаться на вертикальной оси, и по мере борьбы с ветром все более разгоняется.

Этот механизм был использован в модели ветряной электростанции, которую разработал юный изобретатель Сергей Корнев. Эта схема имеет выгодные отличия от ветроустановки с пропеллером. Здесь не требуется высокой точности, допустимо применять различные материалы для изготовления. Ее размеры также выгодно отличаются от пропеллерной модели.

Взгляните на самом деле. Мощность ветряка, основанного на барабанном принципе, требует использования ветроустановки диаметром приблизительно 1 метр, его мощность будет равна пропеллеру с тремя лопастями диаметром 2,5 метров. При этом пропеллер на вертушку необходимо поднимать на большую высоту, например на крышу дома, а барабанный пропеллер можно установить непосредственно на земле. Есть еще некоторые преимущества нового механизма: значительные крутящий момент, достигаемый при небольших оборотах. А это означает, что можно совсем не использовать редуктор, либо ограничиться одноступенчатым редуктором.

Сергей в первоначальной конструкции ограничился барабаном с двумя лопастями. Наиболее оптимальным может быть конструкция, в которой количество лопастей доведены до четырех. Это может значительно увеличить тягу.

Изготовление барабана

В качестве материала для создания лопастей можно взять фанеру, кровельное железо, лист дюралюминия, пластик нужного размера. Нужно учесть, что ротор не должен быть тяжелым, поэтому заготовки большой толщины здесь не подойдут. Это поможет снизить трение в подшипниках, ветроустановка будет лучше вращаться от энергии ветра.

Ниже чертеж вертикального ветряка

На рисунке 3:
1 – сопротивление;
2 – обмотка статора ;
3 – ротор;
4 – регулятор напряжения;
5 – реле обратного тока;
6 – прибор для измерения тока (амперметр);
7 – акб;
8 – предохранитель;
9 – выключатель.
Если в качестве материала применить кровельное железо, возникает необходимость укрепить вертикальные края лопастей. Для этого можно взять железный прут диаметром 5-6 миллиметров, установив его под отбортовкой. Фанеру, если используется она, нужно взять толщиной 5-6 миллиметров, этот материал требует обработки горячей олифой. Щеки барабана делаются из дерева, пластика, либо легкого металла. Стыки необходимо обработать масляной краской.

Крестовины в местах соединений лопастей ветрогенератора предпочтительно соединить сваркой или клепкой из остальных полосок размером 5 x 60 миллиметров. Если взять древесину, то толщина её должна быть не меньше 25 миллиметров, ширина 80 миллиметров.
Вертушки оптимально изготовить из куска стальной трубы длиной 2 метров, внешний диаметр 30 миллиметров. Предварительно, перед выбором заготовки для оси, нужно раздобыть 2 шарикоподшипника. Не стоит брать старые, так как это увеличение трения. Сопоставив размеры подшипников и трубы, вы сэкономите силы и время, вам не придется подстраивать трубу к обоймам подшипников.

Крестовины ротора ветрогенератора нужно приварить к оси вращения, крестовины из дерева присоединить эпоксидкой и металлическими штифтами 5- 6 миллиметров, они должны быть продеты через каждую крестовину и трубу. Для установки лопастей используйте болты М 12. Хорошо проконтролируйте промежуток от лопастей до оси вращения: здесь нужно соблюсти один размер – 140-150 мм. Сконструировав барабан, еще раз промажьте стыки масляной краской (желательно густой).

Базовая часть ветроустановки с вертикальной осью вращения завершена, теперь нужно сделать станину, сварив её или используя клепку, из уголка (можно как металл, так и дерево). На сделанную станину поставьте подшипники. Смотрите за тем, чтобы не возник перекос, так как в этом случае ротор не будет хорошо вращаться. Все элементы ветроустановки 2 раза покрасьте масляной краской, на нижнем месте оси вращения установите шкивы разного диаметра. Ремень, который переброшен через шкив вертушки, присоедините к электрогенератором, здесь подойдет, к примеру, автогенератор. Созданная по представленной технологии модель ветровой установки при ветре 9-10 метров в секунду способно дать мощность в 800 ватт.

Если ветра на улице нет, либо ветер очень слабый для вращения лопастей, то нужно передать вырабатываемую электроэнергию ветра для накопления на акб. Дует ветер – подавайте ток на потребителей, погода безветренная – подключайте аккумуляторы.

Если ветроустановка с вертикальным планируется для питания насоса огорода или сада, ее следует установить над источником воды.

Ниже – попытка сделать ветряк для садового насоса

Построение ветрогенератора с вертикальной осью


Расходные материалы:

Шаг 1: Запчасти

– Труба ПВХ
– Водостойкая древесина
– 2 подшипника (нижняя должна выдерживать нагрузку)
– Катанка (2 размера) (1 большая и 4 маленьких) (нержавеющая сталь, если возможно)
– Болты и шайбы (2 размера) (нержавеющая сталь, если возможно)
– кусок 40 мм круглого алюминия (сплав) (он удержит нижний подшипник)
– 3 винта с ушком

Шаг 2: Давайте начнем



Первое, что вы должны сделать, это измерить вашу трубу ПВХ и разрезать ее на 4 равных части. (у меня было 2 метра в длину, так что было 50 см за штуку).
Когда вы это сделаете, вы обрежете его по длине отверстия.
Теперь у вас должно быть 8 штук (они должны быть точно одинакового размера!

Шаг 3: Изготовление двух дисков турбины


Возьмите 2 куска водостойкой фанеры (12 мм).
Измерьте в 2 направлениях, чтобы получить середину пластины и отметьте эту точку.
Возьми свой компас и сделай круг диаметром 40 см.
Возьмите свою головоломку и вырежьте ее.

Шаг 4: Разделите круг на 8 частей

Вы должны сделать это только на одной доске.
На следующем шаге я объясню почему.

Шаг 5: Вырезание слотов для турбинных лопаток


Я сделал так, чтобы нарисовал линии на двух досках, а затем пометил все дуги, которые мне пришлось разрезать.
Это я бы не стал делать снова! Я думаю, что лучше отметить только один.
Дуги рисуйте так: возьмите одну половину трубы и держите ее напротив одной из 8 линий, которые вы нарисовали ранее. Нарисуйте линию внутри и снаружи трубы. Тот, где вы отметили луки, надеваете сверху, а затем вы зажимаете их вместе. Когда вы порежете их, они будут точно такими же. Я использовал лезвие, которое обычно предназначалось для резки металла. Этот пильный диск чуть тоньше, чем лезвия.
На стороне двух дисков вы делаете маркировку, которая проходит над ними обоими. Таким образом, при сборке турбины диски будут идеально выровнены.
То, что вы также должны делать, когда все еще зажато, это просверлить центральное отверстие до размера вашей большой катанки и 4 отверстия для маленьких стержней. Разделите 4 стержня на турбину, как показано на рисунке ниже. Держитесь на расстоянии около 2 см от луков. Таким образом, вы все еще можете поместить несколько шайб на свои стержни, не касаясь их лезвий. Возьмите зажимы и установите лопасти турбины и 4 меньших стержня, как показано на последнем рисунке. Это должно плотно облегать!

Шаг 6: Приспособление центральной проволочной катушки к размеру


Сначала вы устанавливаете верхнюю часть турбины так же, как вы делали нижнюю часть на предыдущем шаге.
Обратите внимание на маркировку, которую вы сделали на боковых сторонах дисков, когда они все еще были зажаты.
Таким образом, те же самые разрезы будут приятно накладываться друг на друга, и турбина будет меньше качаться после ее завершения. Возможно, вы захотите использовать молоток и маленький кусочек дерева, чтобы не повредить лезвия или диск при ударе по нему. Убедитесь, что лезвия плотно прилегают и 4 маленьких стержня находятся в нужном месте. Это была нелегкая работа. Успехов.
Теперь мы оснастим большую катанку необходимыми болтами и шайбами.
То, что собирались сделать сейчас, это отметка, где мы будем резать катанку.
Первая картинка – вид с нижнего диска.
Я положил 2 болта туда, и они будут опираться на нижний подшипник.
Я оставил там провод дольше, чтобы там можно было подключить какой-нибудь генератор.
Верхний диск – вторая картинка, и стержень будет обрезан короче.
На этой стороне у нас будет только подшипник для балансировки турбины, когда она установлена ​​на раме.

Шаг 7: Повернуть катанку вниз до нужного размера


Если у вас есть токарный станок, это довольно прямолинейная работа.
Я сделал стержень толщиной 10 мм с обеих сторон.
На фотографии показана нижняя сторона катанки.
Убедитесь, что он хорошо сидит, потому что это определит, насколько гладко будет работать ваша турбина.

Шаг 8: Изготовление держателя для нижнего подшипника







Подшипник, который я использовал, состоит из 3 частей, как показано на первом рисунке.
Этот подшипник сделан, чтобы справиться с вертикальным весом.
Если вы внимательно посмотрите, то увидите, что 2 диска не имеют отверстия одинакового внутреннего размера.
Диск с самым большим отверстием (тот, что справа) – это верхняя часть подшипника, на которой будет стоять турбина.
Я вырезал отверстие на токарном станке только диаметром подшипника. Делайте это в зависимости от размера подшипника, который вы будете использовать .
Не делайте дыру глубоко!
Убедитесь, что верхняя часть подшипника просто торчит из держателя.
Причина этого заключается в том, что верхнее кольцо будет вращаться вместе с турбиной и в противном случае трутся о внутреннюю часть держателя, что приведет к замедлению работы турбины и ее быстрому износу.
Вам также придется просверлить отверстие в нижней части держателя, чтобы катанка могла проходить сквозь него.
Сделайте его немного больше, чем размер стержня, чтобы его крепление не касалось боков.
Вы видели, что в этом подшипнике нет смазки, поэтому нам нужно будет установить смазочный ниппель.
Для этого используйте инструмент для нарезания резьбы.
Сначала просверлите отверстие в соответствии с протектором и размером соска, который вы будете использовать. Мой был М6.
Используйте немного смазочно-охлаждающей жидкости, потому что вы режете алюминий, и в противном случае он станет грубым внутри. Запустите режущий инструмент примерно на 1 оборот, а затем верните его назад на пол-оборота. Таким образом, металл режется внутри, и вы не будете тормозить инструмент. Используйте 3 этапа резки, пока не достигнете нужного протектора.

Шаг 9: Создание рамы вокруг турбины



Сначала вы получаете два куска дерева одинаковой длины.
Убедитесь, что они достаточно широкие, чтобы вы могли создать прочную структуру.
Посмотрите на центр их обоих и сделайте отверстие размером с держатель подшипника для нижнего и размер верхнего подшипника для верхнего.
Мне повезло, у меня была большая тренировка, чтобы сделать это. Если нет, возьмите свое самое большое сверло и просверлите его, а затем вырежьте остальное круглым топором.
Для нижнего вы должны просверлить центр желоба с помощью сверла на один размер больше, чем размер большого катанки, которая будет вставляться в подшипник. В нижней части вы должны будете вырезать маленький паз, чтобы ниппель мог поместиться внутрь и чтобы у вас было достаточно места, чтобы вставить смазочный насос. Вы можете видеть, как это должно выглядеть на фотографиях.
Возьмите еще два куска дерева по бокам. (У меня было немного фанеры, поэтому я использовал это)
Возьмите нижнюю часть с держателем подшипника внутри и положите ее на плоскую поверхность.
Используйте одну из боковых частей и прикрутите ее туда. Сначала просверлите несколько отверстий сбоку, чтобы винты лучше вошли. Убедитесь, что он идеально квадратный. (Угол 90 градусов).
Сделайте то же самое для другой стороны.
Теперь возьмите турбину, которая полностью собрана, и опустите ее в нижний подшипник.
Теперь возьмите верхнюю часть и наденьте подшипник на большой стержень. Измерьте по обе стороны турбины и убедитесь, что вы измеряете одинаковое расстояние, чтобы рама была идеально квадратной.
Фильм показывает, как хорошо он крутится.

Вложения

Шаг 10: Создание поддержки турбины






Этот материал я на самом деле не измерял.
Я позаботился о том, чтобы все было в идеальном соответствии с осью турбины.
Просто создайте его, как вы можете видеть на фотографиях.
Просто убедитесь, что его сильная причина будет в нем много силы.
Я еще не подключил ни одного генератора.
Понятия не имел, что с этим связано.
Я думал о другом генераторе энергии. (катушки и нео магниты)
Идеи приветствуются.
Надеюсь, вам понравилась эта турбина.
Держите меня в курсе вашего дела.

Шаг 11:


Как вы можете видеть в маленьких фильмах, я подключил некоторые веревки к турбине, чтобы она была устойчивой.
Я использовал несколько старых штифтов из палатки, чтобы соединить веревки с землей, а со стороны турбины я использовал 3 винта с ушком. Работает хорошо.
Когда вы устанавливаете турбину, убедитесь, что у вас есть кто-то, кто может удерживать турбину, пока вы подключаете провода к земле.



Источник

Ветрогенератор - это механическое устройство, предназначенное для выработки (генерирования) электрического тока. Поток ветра вращает рабочее колесо, взаимодействуя с его лопастями. Вращение передается на генератор, который начинает вырабатывать электрический ток. Такова . На практике все намного сложнее, так как возникает масса трудностей технического и эксплуатационного характера, но в целом возможности этих устройств сильно недооценены.

Россия считается энергоизбыточной страной, имеющей большое количество мощных электростанций, но, тем не менее, имеются районы, где сетевого электричества нет до сих пор. Использование энергии ветра для выработки энергии для подобных районов является хорошей альтернативой, позволяющей решить вопрос если не полностью, то в достаточной степени.

Количество полученной энергии прямо пропорционально мощности генератора и скорости вращения ветряка, что позволяет в теории использовать несколько устройств для получения необходимого количества электроэнергии. Практика пока недостаточно иллюстрирует ситуацию, так как на сегодня для сбора статистических данных не имеется достаточного количества генераторов. Поэтому приходится пока довольствоваться расчетными данными, которые в большинстве случаев подтверждаются на практике.

Существуют две основные разновидности ветрогенераторов:

  • . Они считаются наиболее эффективными, имеют больший КПД и дают неплохие результаты при пользовании
  • . Эти устройства менее эффективны, но обладают рядом специфических качеств, делающих их не менее востребованными среди подобных агрегатов

Виды ветрогенераторов с вертикальной осью вращения

Вертикальный ветрогенератор - это устройство, ось вращения которого расположена перпендикулярно направлению потока ветра и ориентирована в вертикальном направлении. Продольные оси лопастей параллельны оси вращения.

Если горизонтальные генераторы по внешнему виду напоминают пропеллер, то вертикальные ближе к барабану центробежного вентилятора, установленному вертикально и оборудованному малым числом лопаток (обычно их 2 штуки, но бывают и другие варианты). Такое расположение позволяет лопастям одинаково реагировать на потоки ветра с любой стороны без необходимости ориентирования оси вращения на встречном направлении к движению воздуха.

Существуют различные виды вертикальных ветрогенераторов. Разница между ними заключается лишь в типе вращающейся части - ротора, поскольку конструкция неподвижного статора принципиальных изменений не имеет. Известны такие виды, как:

  • ортогональный ротор. Его лопасти расположены по касательной к окружности вращения и имеют сечение как у крыла самолета. Способен начинать вращаться даже при относительно слабом ветре, увеличивая скорость за счет разрежения воздуха над поверхностью лопастей и уплотнения под ней (возникновения подъемной силы). Не имеет высокой парусности лопастей, что позволяет стабилизировать скорость вращения и исключить резкие изменения динамики, способные вывести из строя подшипники
  • . Представляет собой две изогнутые в виде половинок трубы лопасти. При большой площади уравновешивания сил, воздействующих на лопасти, не происходит, так как поток, действующий на внутреннюю часть лопасти, отражается от ее изгиба и частично попадает в изгиб второй лопасти, усиливая ее вращение. Обратная сторона разбивает поток на равные части, одна из которых обтекает изгиб и попадает на рабочую часть, увеличивая вращающий момент, а другая уходит в сторону. Эффективность такого ротора невелика, всего 15%, но по сочетанию характеристик он вполне достоин внимания
  • ротор Дарье. Это один из вариантов ортогональной конструкции. Имеет вантовый вид лопастей, концы которых присоединены к валу вращения, а центральные части, плавно изгибаясь, отходят от вала таким образом, что при взгляде со стороны лопасти образуют своими очертаниями овал или круг. Ротор имеет малую мощность, высокий уровень шума и вибраций, что делает его требовательным к постоянному наблюдению и обслуживанию.
  • геликоидный ротор. Конструкция имеет лопасти сложной формы, закрученной вокруг вертикальной оси. Это позволяет стабилизировать скорость вращения и устранить шум, создаваемый лопастями при вращении. Равномерность работы делает конструкцию более удобной, обеспечивающей ровный результат при разных режимах вращения. Для самостоятельного изготовления этот вариант конструкции наиболее сложен, но, в целом, доступен.
  • многолопастной ротор. Имеет несколько лопастей, что позволяет получить ровное и мощное вращение ротора при относительно слабом ветровом давлении. Обычно используется несколько узких полос на некотором расстоянии от вала вращения, передающих поток с возрастанием скорости и плотности на второй ряд лопастей, расположенный внутри первого. Также существуют варианты с двумя уровнями (пара лопаток, а под ней - другая с разворотом на 90°. Все варианты конструкции имеют неплохие эксплуатационные характеристики, что позволяет считать такую конструкцию одной из наиболее перспективных.

Существуют конструкции, которые предусматривают защиту от уравновешивающего давления потока на обратную сторону крыла. Делается щит по форме части окружности, закрывающий от ветра участок с обратной стороной лопастей таким образом, что ветер воздействует только на рабочую сторону. Для наведения ротора на ветер, т.е. поворота системы при изменении направления потока, делается устройство типа флюгера, поворачивающее защиту в нужную сторону по ветру.

Эффективность всех этих видов примерно одинакова. Принципиальной разницы в характеристиках также не имеется, основные различия лежат в области уменьшения шума, снижения нагрузок на вал, выравнивания режимов вращения.

Преимущества и недостатки ветрогенераторов с вертикальной осью

Вертикальный ветрогенератор - конструкция, удачная для создания своими руками. При всем разнообразии вариантов исполнения, на многие из них до сих пор нет математической модели вращения, что не позволяет создать корректную методику расчета. При этом, такая ситуация способствует активному развитию моделирования всех разновидностей ветрогенераторов и отработке их технических параметров.

Основными преимуществами ветрогенераторов с вертикальной осью принято считать:

  • простота конструкции, возможность изготовления практически любого типа своими руками
  • стабильность, устойчивость режимов работы, вызванная способностью одинаково реагировать на потоки ветра любого направления
  • отсутствует нужда в механизме наведения оси вращения на поток, без чего не могут функционировать генераторы с горизонтальным вращением
  • для того, чтобы изготовить вертикальный ветрогенератор своими руками, требуются относительно малые затраты денег, времени и труда. Основная статья расходов - непосредственно генератор, а вращающиеся части могут быть изготовлены буквально из подручных средств

Недостатками вертикального ветрогенератора считаются:

  • эффективность работы ниже, чем у горизонтальных конструкций
  • при работе устройства издают шум, который сложно устранить, так как он происходит из-за контакта потока воздуха и материала лопасти
  • высокий уровень вибраций и резких изменений режимов вращения создают сильную нагрузку на подшипники, способствуя быстрому выходу подвижных деталей и узлов из строя
  • для создания вертикального генератора требуется большее количество материалов, чем для горизонтальных образцов

Место установки ветрогенератора

Для монтажа ветрогенератора потребуется открытая площадка, не имеющая вблизи препятствий, способных закрыть устройство от ветровых потоков. над уровнем грунта может быть относительно мала, около 3 метров. Примечательно, что с точки зрения эффективности контакта лопастей с ветром, подъем устройства на большую высоту мало влияет на рост производительности генератора, так как поднять ротор на значительную высоту нереально, а изменения в 2-3 метра никаких существенных выгод не приносят.

При этом, необходимо помнить о длине кабеля и его сопротивлении. Большая длина вызовет падение напряжения и потребует значительных расходов на дорогостоящий кабель, поэтому слишком большого удаления от дома делать не рекомендуется, так же, как и чрезмерно приближать ветряк. Вибрации и шум от вращающегося ротора будут очень докучать жителям дома, вызовут нарушения сна и потребуют перемены места установки устройства.

Как самостоятельно изготовить ветрогенератор вертикального типа

Самостоятельное изготовление ветрогенератора вполне возможно, хотя и не так просто, как может показаться на первый взгляд. Понадобится либо собрать весь комплект оборудования, что весьма сложно, либо некоторые его элементы приобрести, что довольно дорого. В состав комплекта могут входить:

  • ветрогенератор
  • инвертор
  • комплект аккумуляторов
  • провода, кабели, вспомогательное оборудование

Оптимальным вариантом станет частичное приобретение готового оборудования, частичное изготовление своими руками. Дело в том, что цены на узлы и элементы очень высоки, доступны не для всех. Кроме того, высокие единовременные вложения заставляют задуматься, нельзя ли эти средства реализовать более эффективным образом.

Система работает следующим образом:

  • ветряк вращается и передает момент на генератор
  • возникает электрический ток, который заряжает аккумулятор
  • аккумулятор присоединяется к инвертору, преобразующему постоянный ток в 220 В 50Гц переменного тока.

Сборку обычно начинают с генератора. Наиболее удачным вариантом является сборка 3-фазной конструкции на неодимовых магнитах, позволяющей вырабатывать соответствующий ток.

Вращающиеся части делаются на основе одной из систем, наиболее доступной для воссоздания своими руками. из отрезков труб, распиленных пополам металлических бочек или согнутого определенным образом листового металла.

Мачта сваривается на земле и устанавливается в вертикальное положение уже в готовом виде. Как вариант, делается из дерева сразу на месте установки генератора. Для прочной и надежной установки следует сделать для опор фундамент и закрепить мачту анкерами. При большой высоте ее следует дополнительно закрепить растяжками.

Все узлы и детали системы требуют подгонки друг к другу по мощности, настройки работоспособности. Заранее сказать, невозможно, так как слишком много неизвестных параметров не позволят вычислить характеристики системы. При этом, если изначально закладывать систему под определенную мощность, то на выходе всегда получаются довольно близкие значения. Основным требованием становится прочность и аккуратность изготовления узлов, чтобы работа генератора была достаточно стабильной и надежной.

В этой статье мы подробно разберем, как сделать ветрогенератор своими руками. Ведь быт современного человека без электроэнергии – трудно представим. И даже небольшие перебои в подаче электричества становятся порой «парализующим моментом» для нормальной жизни в собственном доме. А такие неполадки, приходится признать, для некоторых загородных поселков или населенных пунктов в сельской местности – увы, не редкость. Значит, необходимо каким-то образом обезопасить себя от неприятностей, обзавестись резервным источником энергии. А если принять в расчет еще и постоянно растущие тарифы, то наличие собственного источника, да еще и работающего практически «забесплатно», становится заветной мечтой многих владельцев домов.

Одним из направлений развития «бесплатной энергетики» в наше время является использование энергии ветра. Многие, наверное, видели впечатляющие картины огромных ветряков, успешно применяемых в некоторых странах Европы – кое-где доля выработанной ветром энергии уже достигает нескольких десятков процентов от общего объема. Вот и возникает соблазн – а не попробовать ли и мне сделать ветрогенератор своими руками, чтобы раз и навсегда получить независимость от электросетей?

Вопрос резонный, но следует сразу несколько охладить пыл «мечтателя». Чтобы создать действительно качественную, производительную установку по выработке электроэнергии, требуются немалые знания в механике и электротехнике. Нужно быть весьма опытным мастером на все руки – предстоит целый ряд операций высокой сложности, требующих точного проектирования и квалифицированного подхода в исполнении. По совокупности этих причин, как можно судить по обсуждениям на форумах, довольно много «соискателей» либо не получили ожидаемого результата, либо и вовсе отказались от задуманного проекта.

Поэтому в данной статье будет дана обзорная картина, показывающая общие проблемы и направления их решения в процессе создания ветрогенераторов. Можно будет примерно оценить масштабность работ и трезво взвесить свои возможности – стоит ли браться самому.

Что это такое – ветрогенератор? Общее устройство системы

Существует несколько способов получения электрической энергии – за счет воздействия потоком фотонов (световой, например, солнечные батареи), за счет определенных химических реакций (широко применяется в элементах питания), за счет разницы температур. Но шире всего в настоящее время используется преобразование кинетической энергии в электрическую. Это преобразование происходит в специальных устройствах, которые как раз и называются генераторами.

Принцип работы генератора преобразователя кинетической энергии в электрическую, раскрыт и описан еще в XIX веке Фарадеем.


Принцип устройства простейшего электрического генератора

Он заключается в том, что если проводящую рамку разместить в изменяющемся магнитном поле, то в ней будет индуцироваться электродвижущая сила, которая при замыкании цепи приведет к появлению электрического тока. А изменение магнитного потока можно добиться вращением этой рамки в магнитном поле, или создаваемом постоянными магнитами, или появляющегося в обмотках возбуждения. При изменении положения рамки меняется величина пересекающего ее магнитного потока. И чем выше скорость изменения, тем больше показатели и наводимой ЭДС. Таким образом, чем больше оборотов передается ротору (вращающейся части генератора), те большего напряжения можно добиться на выходе.

Схема, безусловно, показана с большими упрощениями, просто для уяснения принципа.

Передача вращения на ротор генератора может осуществляться по-разному. И один из путей найти бесплатный источник энергии, который приведет в движение кинематическую часть устройства – это «поймать» силу ветра. То есть примерно так же, как это удалось сделать когда-то создателям ветряных мельниц.

Таким образом, устройство ветрового генератора подразумевает наличие генерирующего устройства и механизма передачи его статору вращательного движения, то есть ветряка. Кроме того, обязательным условием становится конструкция, обеспечивающая надежную установку системы, так как ее часто приходится размещать на немалой высоте, чтобы полноценной «ловле ветра» не мешали естественные или искусственные препятствия. В ряде случаев используется еще и кинематическая передача, предназначенная для повышения количества оборотов ротора.


Один из примеров повышающей передачи вращения от ветряка на генератор

Но и это – еще не все. Наличие и скорость ветра – величины чаще всего крайне непостоянные. И ставить потребление выработанной энергии в зависимость от «капризов погоды» - дело неразумное. Поэтому ветрогенератор обычно работает в связке с системой аккумуляции энергии.


Выработанный ток выпрямляется, стабилизируется и через специальное устройство-контроллер или поступает непосредственно на дальнейшее потребление, или перенаправляется на зарядку включённых в схему мощных аккумуляторов. С аккумуляторов через инвертор, преобразующий постоянный ток в переменный нужного напряжения и частоты, питание поступает к точкам потребления. Аккумуляторы становятся своеобразным буферным звеном: если текущая нагрузка меньше текущей (очень зависимой от силы ветра) мощности генератора, или если на протяжении какого-то времени и вовсе не подключены приборы потребления, то идет зарядка батарей. Если нагрузка становится выше вырабатываемой мощности – батареи разряжаются.

Интересный момент – именно эта особенность ветровой энергетической установки позволяет планировать мощность самого генератора, не исходя из пиковых показателей нагрузки (за это будет отвечать в большей мере инвертор), а отталкиваясь из прогнозируемого потребления энергии в течение определенного периода (например, месяца).

Безусловно, в быту могут использоваться и более простые схемы. Например, ветровая установка просто обслуживает какое-то низковольтное осветительное оборудование и т.п.


Плюсы и минусы ветровых электростанций

Для примера посмотрим вначале на простейшую конструкцию ветрогенератора, которую сможет собрать даже школьник средних классов. Практическое применение такой «электростанции» – не особо широкое, но просто чтобы расширить свое понимание и обрести некоторые навыки – почему бы и нет?

В последнее время замечается стремительный рост популярности альтернативных источников энергии. Использование ветра относится к самым востребованным направлениям в энергетике, поэтому многие люди задумываются о покупке вертикального ветрогенератора для своего дома. Народные умельцы пытаются соорудить такую установку своими руками, что вполне реально.

Общая информация

Задача современного вертикального ветряка заключается в преобразовании силы ветра в электрическую энергию. Первые прототипы подобного изобретения появились очень давно, но в те времена люди не придавали им такого значения, как сейчас. Что касается современных установок, то они характеризуются массой преимуществ и обеспечивают стабильную подачу электроэнергии, которой вполне хватает для бытовых нужд. В некоторых европейских странах доля потребляемых энергоресурсов, вырабатываемых ветровыми станциями, составляет 25%. В их числе находится Дания.

Вертикальные ветрогенераторы по некоторым параметрам превосходят классические горизонтальные типы, что обусловлено специфической конструкцией и принципом работы. У них, в отличие от моделей с горизонтальной осью, практически нет узлов и механизмов, которые ориентируются на ветровой поток. Из-за этой особенности любые гидроскопические нагрузки существенно снижаются, а конструкция принимает произвольное положение независимо от направления ветрового потока. При этом такие ветряки обладают более простым исполнением, что позволяет соорудить их в домашних условиях.

Среди ключевых разновидностей установок с вертикальной осью вращения выделяют:

  • ортогональную конструкцию;
  • механизм Дарье;
  • механизм Савониуса;
  • ветряк с геликоидной конструкцией.

Основные преимущества

Главным преимуществом вертикального ветряка является его способность функционировать на низкой высоте, выдавая высокий уровень КПД. И хоть горизонтальный ветрогенератор более производительный, у вертикального во время обслуживания системы не приходится задействовать сложные механизмы или дорогостоящее оборудование, при этом конструкция обладает высокой надежностью и большим сроком службы.

За счет особого профиля лопастей и специфической формы ротора агрегат обеспечивает лучшие показатели производительности, которые не меняются в зависимости от движения ветра. Компактные модели бытового назначения оснащены тремя (или больше) вращающимися элементами, способными мгновенно зафиксировать порыв ветра и начать процесс его преобразования в электрическую энергию. Они работают при силе ветра от 1,5 м/с, что существенно повышает их эффективность и КПД.

Во время работы установка не издает шума или характерного для крупных ветряков звука, что считается бесспорным плюсом. Также она не выбрасывает вредные вещества в атмосферу, не нуждается в частом обслуживании и продолжает поставлять в помещение качественную энергию в течение большого промежутка времени. Если составить список достоинств вертикальных ветрогенераторов, то он будет состоять из таких пунктов:

  1. Максимальная экологичность.
  2. Способность работы без дополнительного топлива.
  3. Экономичность.
  4. Отсутствие сложного и частого обслуживания.
  5. Работа на основе неисчерпаемой энергии.

Если ветряк сконструирован правильно, то он сможет превратить частное помещение в автономный объект по добыче электричества, став дополнительным источником дохода. Однако кроме плюсов у таких агрегатов есть и минусы:

  1. Дороговизна. Заводские модели от иностранных брендов стоят довольно дорого, но ветрогенераторы с вертикальной осью вращения российского производства вполне доступные.
  2. Приличный уровень шумности. Такой минус присутствует у крупных промышленных ветряков, так как бытовые разработки практически бесшумные.
  3. Нестабильная мощность.

Последняя особенность ветряков считается наиболее существенной, но специалисты избавляются от нее с помощью установки нескольких батарей. Также важно отметить, что производительность ветряной станции может зависеть от погодных условий, которые зачастую бывают непредсказуемыми. Плюсов у подобного генератора энергии гораздо больше, чем минусов, поэтому вопрос его установки в частном доме становится все более актуальным.

Принцип работы и классификация

В основе работы вертикального ветряка применен принцип магнитной левитации. При вращении турбин происходит образование импульсной и подъемной силы, а также силы фактического торможения. За счет первых двух лопасти установки начинают двигаться, что вызывает активацию ротора и приводит к созданию магнитного поля. Система работает автономно и не требует участия владельца.

Несмотря на общий принцип работы, ветроулавливающие приборы могут отличаться своей конструкцией. И хоть это практически не сказывается на эффективности и производительности, но помогает найти оптимальный вариант для конкретных задач в конкретной местности.

Если говорить об ортогональных системах, то они построены на базе прочной оси вертикального вращения и нескольких лопастей, которые находятся на удалении от центровой основы. Система не требует монтажа дополнительных направляющих узлов и полноценно работает при любом ветре. Вертикальное расположение главного вала позволяет устанавливать привод на уровне земли, а это заметно упрощает дальнейшую эксплуатацию или ремонтные работы.

Единственным уязвимым местом в ортогональных генераторах являются опорные узлы. Они обладают не очень большим эксплуатационным сроком, что объясняется необходимостью работать под высокими нагрузками, которые оказывает ротор. Чтобы предотвратить быстрое повреждение системы, опорные детали нужно вовремя обслуживать, осуществляя замену вышедших из строя элементов новыми.

Среди минусов приборов этого типа выделяют внушительный вес лопастей, а также меньший показатель КПД по сравнению с горизонтально-осевыми приборами. Но для бытовых целей подобных ветрогенераторов вполне хватает. Со своими рабочими обязанностями они справляются в лучшем виде.

Модели с ротором Дарье и Савониуса

Устройства, в основе которых работает ротор Дарье, оборудованы вертикальной осью вращения и двумя-тремя плоскими лопастными системами, не имеющими характерного аэродинамического профиля и находящимися у основания и на верхушке. Принцип работы установки базируется на силе или направлении ветра. К преимуществам такого ветряка относятся:

  1. Максимальная скорость вращения.
  2. Возможность монтажа системы привода непосредственно на земле.
  3. Простота осмотра и обслуживания.

Модели с двумя лопастями вступают во взаимодействие с ветром только при его сильных порывах. Если ветровой поток недостаточно интенсивный или равномерно набегающий, они остаются неподвижными. Из недостатков ветряков с генератором Дарье выделяют уязвимость к динамическим нагрузкам и сравнительно низкий показатель КПД.

Что касается ветряных устройств, оснащенных ротором Савониуса, то они обладают полуцилиндрическими лопастями и обеспечивают высокий крутящий момент даже при недостаточно сильном ветре. Максимальная мощность ветрогенераторов этого типа достигает 5 кВт, поэтому их практически не применяют в качестве самостоятельной рабочей станции. Вместо этого приборы стали использоваться как инструмент для разгона роторных моделей Дарье. Из-за весомых недостатков массовое производство такого оборудования считается неоправданным.

Другие типы

Ветряки, оснащенные многолопастным ротором, представляют собой качественную модернизацию классических моделей ортогонального типа. В основе их работы лежит роторный комплекс из нескольких лопастей, размещенных в два ряда. Наружный ярус является статичным и выполняет роль направляющего механизма, захватывая поток ветра и сжимая его. За счет этой технологии фактическая скорость ветра существенно растет.

Второй ярус состоит из подвижных элементов, которые воспринимают воздухопоток от наружных лопастей под определенным углом. Такая конфигурация делает прибор высокопроизводительным и существенно повышает его КПД. Но стоят системы с многолопастным ротором недешево, поэтому среднестатистические потребители останавливаются на более простых и доступных решениях. Тем не менее эксперты в области энергетики заявляют, что эта установка демонстрирует наилучшую эффективность в своем классе и может работать даже при незначительном ветровом потоке.

Также на рынке широко распространены геликоидные ветряные установки, представляющие собой усовершенствованную версию ортогональных приборов. В этих приборах лопасти закручены по дуге, что обеспечивает эффективное улавливание ветрового потока и стабильное вращение. Применение передовой технологии вращения снижает динамическую нагрузку на основные рабочие элементы, что положительно сказывается на сроках службы установки.

Устройства с геликоидным ротором обладают максимальной надежностью и способны справляться с большими нагрузками. Но при работе они могут издавать шум и дополнительные звуковые волны.

К сожалению, такая разновидность ветряков не обрела широкой популярности из-за высокой стоимости. Объясняется это тем, что производство геликоидных приборов - очень трудоемкий и длительный процесс, который подразумевает использование сложной технологии.

Вертикально-осевые устройства

Что касается вертикально-осевых генераторов, то они отличаются от предыдущих типов расположением лопастной системы. В вертикальной конфигурации она напоминает собой авиационное крыло с параллельной вертикальному валу осью. По своим конструктивным особенностям изобретение слегка похоже на ротор Дарье, но у него есть масса преимуществ и уникальных особенностей.

Работает такой генератор намного быстрее , чем остальные модели, поэтому показатели его КПД заметно выше. За короткий промежуток времени установка выдает требуемый энергоресурс и восполняет нужды потребителей в энергопотреблении.

Также к плюсам системы можно отнести максимальную надежность и долговечность, способность справляться с внушительными нагрузками и относительную дешевизну. За счет таких характеристик вертикально-осевые генераторы пользуются большой популярностью и являются лидерами рынка.

Изготовление своими руками

Даже самые простые модели ветрогенераторов стоят довольно дорого, поэтому позволить себе покупку такого устройства может не каждый. Из-за этого народные умельцы и талантливые изобретатели стали изготовлять продуктивные механизмы своими руками.

Сделать ветрогенератор вертикально-осевого типа несложно. Для этого нужно найти подходящее комплектующее оборудование, составить чертежи и следовать инструкции. При минимальных порывах ветра такой ветряк начнет работать, радуя своих владельцев доступной и качественной электроэнергией. Для создания будущего генератора необходимо подготовить:

  • ротор - подвижный узел;
  • лопастную систему;
  • осевую мачту;
  • статор;
  • батареи;
  • инвертор;
  • контроллер.

При самостоятельном изготовлении лопастей рекомендуется задействовать легкий пластик, который обладает хорошей упругостью. Остальное сырье боится всевозможных воздействий и быстро деформируется, поэтому лучше останавливаться на пластиковых конструкциях.

Перед тем как приступить к производству, нужно учесть, что такой прибор недостаточно мощный и существенно уступает заводским образцам по производительности. Чтобы не разочароваться в самодельной конструкции, лучше заранее сделать ее в 2 раза мощнее, чем упоминается в инструкции.

Без сомнений, ветровой генератор - это одно из самых полезных изобретений нашего века. И необязательно быть олигархом, чтобы обзавестись такой системой, ведь при минимальных усилиях ее можно изготовить самостоятельно.

Нами была разработана конструкция ветрогенератора с вертикальной осью вращения. Ниже, представлено подробное руководство по его изготовлению, внимательно прочтя которое, вы сможете сделать вертикальный ветрогенератор сами.

Ветрогенератор получился вполне надежный, с низкой стоимостью обслуживания, недорогой и простой в изготовлении. Представленный ниже список деталей соблюдать не обязательно, вы можете внести какие-то свои коррективы, что-то улучшить, что-то использовать свое, т.к. не везде можно найти именно то, что в списке. Мы постарались использовать недорогие и качественные детали.

Используемые материалы и оборудование:

Наименование Кол-во Примечание
Список используемых деталей и материалов для ротора:
Предварительно вырезанный лист металла 1 Вырезан из стали толщиной 1/4" при помощи гидроабразивной, лазерной и др. резке
Ступица от авто (Хаб) 1 Должна содержать 4 отверстия, диаметр около 4 дюймов
2" x 1" x 1/2" неодимовый магнит 26 Очень хрупкие, лучше заказать дополнительно
1/2"-13tpi x 3" шпилька 1 TPI - кол-во витков резьбы на дюйм
1/2" гайка 16
1/2" шайба 16
1/2" гровер 16
1/2".-13tpi колпачковая гайка 16
1" шайба 4 Для того, чтобы выдержать зазор между роторами
Список используемых деталей и материалов для турбины:
3" x 60" Оцинкованная труба 6
ABS пластик 3/8" (1.2x1.2м) 1
Магниты для балансировки Если нужны Если лопасти не сбалансированы, то магниты прикрепляются для балансировки
1/4" винт 48
1/4" шайба 48
1/4" гровер 48
1/4" гайка 48
2" x 5/8" уголки 24
1" уголки 12 (опционально) В случае, если лопасти не держат форму, то можно добавить доп. уголки
винты, гайки, шайбы и гроверы для 1" уголка 12 (опционально)
Список используемых деталей и материалов для статора:
Эпоксидка с затвердителем 2 л
1/4" винт нерж. 3
1/4" шайба нерж. 3
1/4" гайка нерж. 3
1/4" кольцевой наконечник 3 Для эл. соединения
1/2"-13tpi x 3" шпилька нерж. 1 Нерж. сталь не является ферромагнетиком, поэтому не будет "тормозить" ротор
1/2" гайка 6
Стеклоткань Если нужна
0.51мм эмал. провод 24AWG
Список используемых деталей и материалов для монтажа:
1/4" x 3/4" болт 6
1-1/4" фланец трубы 1
1-1/4" оцинк. труба L-18" 1
Инструменты и оборудование:
1/2"-13tpi x 36" шпилька 2 Используется для поддомкрачивания
1/2" болт 8
Анемометр Если нужен
1" лист алюминия 1 Для изготовления проставок, если понадобятся
Зеленая краска 1 Для покраски держателей пластика. Цвет не принципиален
Голубая краска бал. 1 Для покраски ротора и др. частей. Цвет не принципиален
Мультиметр 1
Паяльник и припой 1
Дрель 1
Ножовка 1
Керн 1
Маска 1
Защитные очки 1
Перчатки 1

Ветрогенераторы с вертикальной осью вращения не настолько эффективны, как их горизонтальные собратья, однако вертикальные ветрогенераторы менее требовательны к месту их установки.

Изготовление турбины

1. Соединяющий элемент - предназначен для соединения ротора к лопастям ветрогенератора.
2. Схема расположения лопастей - два встречных равносторонних треугольника. По данному чертежу потом легче будет расположить уголки крепления лопастей.

Если не уверены в чем то, шаблоны из картона помогут избежать ошибок и дальнейших переделываний.

Последовательность действий изготовления турбины:

  1. Изготовление нижней и верхней опор (оснований) лопастей. Разметьте и при помощи лобзика вырежьте из ABS пластика окружность. Затем обведите ее и вырежьте вторую опору. Должны получиться две абсолютно одинаковые окружности.
  2. В центре одной опоры вырежьте отверстие диаметром 30 см. Это будет верхняя опора лопастей.
  3. Возьмите хаб (ступица от авто) и разметьте и просверлите четыре отверстия на нижней опоре для крепления хаба.
  4. Сделайте шаблон расположения лопастей (рис. выше) и разметьте на нижней опоре места крепления уголков, которые будут соединять опору и лопасти.
  5. Сложите лопасти в стопку, прочно свяжите их и обрежьте до требуемой длины. В данной конструкции лопасти длиной 116 см. Чем длинее лопасти, тем больше энергии ветра они получают, но обратной стороной является нестабильность в сильный ветер.
  6. Разметьте лопасти для крепления уголков. Накерните, а затем просверлите отверстия в них.
  7. Используя шаблон расположения лопастей, который представлен на рисунке выше, прикрепите лопасти к опоре при помощи уголков.

Изготовление ротора

Последовательность действий по изготовлению ротора:

  1. Положите два основания ротора друг на друга, совместите отверстия и напильником или маркером сделайте небольшую метку по бокам. В дальнейшем, это поможет правильно сориентировать их относительно друг-друга.
  2. Сделайте два бумажных шаблона расположения магнитов и приклейте их на основания.
  3. Промаркируйте полярность всех магнитов при помощи маркера. В качестве "тестера полярности" можно использовать небольшой магнит, обмотанный тряпкой или изолентой. Проводя его над большим магнитом, будет хорошо видно, отталкивается он или притягивается.
  4. Приготовьте эпоксидную смолу (добавив в нее отвердитель). И равномерно нанесите ее снизу магнита.
  5. Очень аккуратно поднесите магнит к краю основания ротора и переместите его к своей позиции. Если магнит устанавливать сверху ротора, то большая мощность магнита может его резко примагнитить и он может поломаться. И никогда не суйте свои пальцы и другие части тела между двумя магнитами или магнитом и железом. Неодимовые магниты очень мощные!
  6. Продолжайте приклеивать магниты к ротору (не забудьте смазывать эпоксидкой), чередую их полюса. Если магниты сьезжают под действием магнитной силы, то воспользуйтесь куском дерева, располагая его между ними для страховки.
  7. После того, как один ротор закончили, переходите к второму. Используя ранее поставленную метку, расположите магниты точно напротив первого ротора, но в другой полярности.
  8. Положите роторы подальше друг от друга (чтобы они не примагнитились, иначе потом не отдерете).

Изготовление статора очень трудоемкий процесс. Можно конечно купить готовый статор (попробуй еще найти их у нас) или генератор, но не факт, что они подойдут для конкретного ветряка со своими индивидуальными характеристиками

Статор ветрогенератора - электрический компонент, состоящий из 9-ти катушек. Катушка статора изображена на фото выше. Катушки разделены на 3 группы, по 3 катушки в каждой группе. Каждая катушка намотана проводом 24AWG (0.51мм) и содержит в себе 320 витков. Большее количество витков, но более тонким проводом даст более высокое напряжение, но меньший ток. Поэтому, параметры катушек могут быть изменены, в зависимости от того, какое напряжение вам требуется на выходе ветрогенератора. Нижеследующая таблица поможет вам определиться:
320 витков, 0.51 мм (24AWG) = 100В @ 120 об/мин.
160 витков, 0.0508 мм (16AWG) = 48В @ 140 об/мин.
60 витков, 0.0571 мм (15AWG) = 24В @ 120 об/мин.

Вручную наматывать катушки - это скучное и трудное занятие. Поэтому, чтобы облегчить процесс намотки я бы вам посоветовал сделать простое приспособление - намоточный станок. Тем более, что конструкция его достаточно проста и сделать его можно из подручных материалов.

Витки всех катушек должны быть намотаны одинаково, в одном и том же направлении и обращайте внимание или отмечайте, где начало, а где конец катушки. Для предотвращения разматывания катушек, они обмотаны изолентой и промазаны эпоксидкой.

Приспособа сделана из двух кусков фанеры, изогнутой шпильки, куска ПВХ-трубы и гвоздей. Перед тем, как изогнуть шпильку, нагрейте ее горелкой.

Небольшой кусок трубы между дощечками обеспечивает заданную толщину, а четыря гвоздя обеспечивают необходимые размеры катушек.

Вы можете придумать свою конструкцию намоточного станка, а может у вас уже имеется готовый.
После того, как все катушки намотаны их необходимо проверить на идентичность друг к другу. Это можно сделать при помощи весов, а также нужно померить сопротивления катушек мультиметром.

Не подключайте домашних потребителей напрямую от ветрогенератора! Также соблюдайте меры безопасности при обращении с электричеством!

Процесс соединения катушек:

  1. Зачистите шкуркой концы выводов каждой катушки.
  2. Соедините катушки, как показано на рисунке выше. Должно получиться 3 группы, по 3 катушки в каждой группе. При такой схеме соединений получится трехфазный переменный ток. Концы катушек припаяйте, либо воспользуйтесь зажимами.
  3. Выберите одну из следующих конфигураций:
    А. Конфигурация "звезда ". Для того, чтобы получить большое напряжение на выходе, соедините выводы X,Y и Z между собой.
    B. Конфигурация "треугольник". Для того, чтобы получить большой ток, соедините X с B, Y с C, Z с A.
    C. Для того, чтобы в будущем сделать возможность изменять конфигурацию, нарастите все шесть проводников и выведите их наружу.
  4. На большом листе бумаге нарисуйте схему расположения и подключения катушек. Все катушки должны быть равномерно распределены и соответствовать расположению магнитов ротора.
  5. Прикрепите катушки при помощи скотча к бумаге. Приготовьте эпоксидную смолу с отвердителем для заливки статора.
  6. Для нанесения эпоксидки на стеклоткань используйте малярную кисть. Если необходимо, то добавьте небольшие кусочки стеклоткани. Центр катушек не заполняйте, чтобы обеспечить их достаточное охлаждение при работе. Постарайтесь избегать образования пузырьков. Целью данной операции является закрепление катушек на своих местах и придание плоской формы статору, который будет располагаться между двумя роторами. Статор не будет нагруженным узлом и не будет вращаться.

Для того, чтобы стало более понятно, рассмотрим весь процесс в картинках:

Готовые катушки помещаются на вощеную бумагу с начерченной схемой расположения. Три небольших круга по углам на фото выше - места отверстий для крепления кронштейна статора. Кольцо в центре предотвращает попадание эпоксидки в центральную окружность.

Катушки закреплены на своих местах. Стеклоткань, небольшими кусочками помещается вокруг катушек. Выводы катушек можно вывести внутрь или наружу статора. Не забудьте оставить достаточный запас длины выводов. Обязательно еще раз проверьте все соединения и прозвоните мультиметром.

Статор практически готов. Отверстия для крепления кронштейна, сверлятся в статоре. При сверлении отверстий смотрите не попадите в выводы катушек. После завершения операции, обрежьте лишнюю стеклоткань и если необходимо, шкуркой зачистите поверхность статора.

Кронштейн статора

Труба для крепления оси хаба была обрезана под нужный размер. В ней были просверлены отверстия и нарезана резьба. В дальнейшем в них будут вкручены болты, которые будут удерживать ось.

На рисунке выше показан кронштейн, к которому будет крепиться статор, находящийся между двумя роторами.

На фото выше показана шпилька с гайками и втулкой. Четыре таких шпильки обеспечивают необходимый зазор между роторами. Вместо втулки можно использовать гайки большего размера, либо самому вырезать шайбы из алюминия.

Генератор. Окончательная сборка

Небольшое уточнение: малый воздушный зазор между связкой ротор-статор-ротор (который задается шпилькой с втулкой), обеспечивает более высокую отдаваемую мощность, но возрастает риск повреждения статора или ротора при перекосе оси, который может возникнуть при сильном ветре.

На левом рисунке ниже, показан ротор с 4-мя шпильками для обеспечения зазора и двумя алюминиевыми пластинами (которые в дальнейшем будут убраны).
На правом рисунке показан собранный и покрашенный в зеленый цвет статор, установленный на место.

Процесс сборки:
1. В плите верхнего ротора просверлите 4 отверстия и нарежьте в них резьбу для шпильки. Это необходимо для плавного опускания ротора на свое место. Уприте 4 шпильки в алюминиевые пластины приклеенные ранее и установите на шпильки верхний ротор.
Роторы будут притягиваться друг к другу с очень большой силой, поэтому и нужно такое приспособление. Сразу выровняйте роторы относительно друг-друга по поставленным ранее метках на торцах.
2-4. Поочередно вращая ключом шпильки, равномерно опускайте ротор.
5. После того, как ротор уперся в втулку (обеспечивающая зазор), выкрутите шпильки и уберите алюминиевые пластины.
6. Установите хаб (ступицу) и прикрутите его.

Генератор готов!

После установки шпилек (1) и фланца (2) ваш генератор должен выглядеть приблизительно так (см. рис. выше)

Болты из нержавейки служат для обеспечения электрического контакта. На провода удобно использовать кольцевые наконечники.

Колпачковые гайки и шайбы служат для крепления соедин. платы и опоры лопастей к генератору. Итак, ветрогенератор полностью собран и готов к тестам.

Для начала, лучше всего рукой раскручивать ветряк и измерять параметры. Если все три выходные клеммы закоротить между собой, то ветряк должен вращаться очень туго. Это может быть использовано для остановки ветрогенератора для сервисного обслуживания или в целях безопасности.

Ветрогенератор можно использовать не только для обеспечения дома электричеством. К примеру данный экземпляр, сделан так, чтобы статор вырабатывал большое напряжение, которое затем используется для нагрева.
Рассматриваемый выше генератор выдает 3-х фазное напряжение с различной частотой (зависит от силы ветра), а к примеру в России используется однофазная сеть 220-230В, с фиксированной частотой сети 50 Гц. Это отнюдь не означает, что данный генератор не подойдет для питания бытовых приборов. Переменный ток с данного генератора может быть преобразован в постоянный ток, с фиксированным напряжением. А постоянный ток уже может использоваться для питания светильников, нагрева воды, заряда аккумуляторов, а может быть поставлен преобразователь для преобразования постоянного тока в переменный. Но это уже выходит за рамки данной статьи.

На рисунке выше простая схема мостового выпрямителя, состоящего из 6-ти диодов. Он преобразовывает переменный ток в постоянный.

Место установки ветрогенератора

Ветрогенератор, описываемый здесь, установлен на 4-х метровой опоре на краю горы. Трубный фланец, который установлен снизу генератора обеспечивает легкую и быструю установку ветрогенератора - достаточно прикрутить 4 болта. Хотя для надежности, лучше приварить.

Обычно, горизонтальные ветрогенераторы "любят" когда ветер дует с одного направления, в отличии от вертикальных ветряков, где за счет флюгера, они могут поворачиваться и им не важно направление ветра. Т.к. данный ветряк установлен на берегу скалы, то ветер там создает турбулентные потоки с разных направлений, что не очень эффективно для данной конструкции.

Другим фактором, который необходимо учитывать при подборе места размещения, является сила ветра. Архив данных по силе ветра для вашей местности можно найти в интернете, правда это будет очень приблизительно, т.к. все зависит от конкретного места.
Также, в выборе месторасположения установки ветрогенератора поможет анемометр (прибор для измерения силы ветра).

Немного о механике ветрогенератора

Как известно, ветер возникает из-за разности температур поверхности земли. Когда ветер вращает турбины ветрогенератора, он создает три силы: подьемную, торможения и импульсную. Подьемная сила обычно возникает над выпуклой поверхностью и является следствием разности давлений. Сила торможения ветра возникает за лопастями ветрогенератора, она является нежелательной и тормозит ветряк. Импульсная сила возникает из-за изогнутой формы лопастей. Когда молекулы воздуха толкают лопасти сзади, то им некуда потом деваться и они собираются позади них. В результате, они толкают лопасти в направлении ветра. Чем больше подьемная и импульсная силы и меньше сила торможения, тем быстрее лопасти будет вращаться. Соответственно вращается ротор, который создает магнитное поле на статоре. В результате чего вырабатывается электрическая энергия.

Скачать схему расположения магнитов.

В продолжение темы:
Ленточный фундамент

Спагетти с соусом из рыбной консервы — этот недорогой рецепт мы увидели на пачке купленных нами спагетти. Рецепт показался нам очень простым, ну и мы решили попробовать...

Новые статьи
/
Популярные