Электричество в живой природе: шокирующие факты. Электричество – мощная природная сила на службе человечества Научная работа электричество и живые организмы

Продолжаем публикацию научно-популярных лекций, прочитанных молодыми вузовскими преподавателями, получившими гранты Благотворительного фонда В. Потанина. На этот раз предлагаем вниманию читателей изложение лекции, которую прочла доцент кафедры физиологии человека и животных Саратовского государственного университета им. Н. Г. Чернышевского кандидат биологических наук Оксана Семячкина-Глушковская.

Живые электростанции

Электричество играет порой невидимую, но жизненно важную роль в существовании многих организмов, включая человека.

Удивительно, но электричество вошло в нашу жизнь благодаря животным, в частности электрическим рыбам. Например, в основе электрофизиологического направления в медицине лежит использование в лечебных процедурах электрических скатов. Живые источники электричества в свою врачебную практику впервые ввёл известный древнеримский врач Клавдий Гален. Сын богатого архитектора, Гален получил вместе с хорошим образованием внушительное наследство, что позволило ему путешествовать в течение нескольких лет по берегам Средиземного моря. Однажды в одной из маленьких деревушек Гален увидел странное зрелище: двое местных жителей шли ему навстречу с привязанными к голове скатами. Это «обезболивающее средство» нашло применение при лечении ран гладиаторов в Риме, куда Гален вернулся после завершения путешествия. Своеобразные физиопроцедуры оказались настолько действенными, что даже император Марк Антоний, страдавший болями в спине, рискнул воспользоваться непривычным способом лечения. Избавившись от изнурительного недуга, император назначил Галена личным врачом.

Однако многие электрические рыбы используют электричество далеко не в мирных целях, в частности для того, чтобы убивать свою добычу.

Впервые европейцы столкнулись с чудовищными живыми электростанциями в джунглях Южной Америки. Отряд искателей приключений, проникших в верховья Амазонки, наткнулся на множество мелких ручейков. Но как только один из участников экспедиции ступил ногой в тёплую воду ручейка, он упал без сознания и пробыл в таком состоянии два дня. Всё дело было в электрических угрях, обитающих в этих широтах. Амазонские электрические угри, достигающие трёх метров в длину, способны генерировать электричество напряжением более 550 В. Электрический удар в пресной воде оглушает добычу, которая обычно состоит из рыб и лягушек, но способен также убить человека и даже лошадь, если они в момент разряда находятся вблизи угря.

Неизвестно, когда бы всерьёз человечество взялось за электричество, если бы не удивительный случай, произошедший с женой известного болонского профессора Луиджи Гальвани. Не секрет, что итальянцы славятся широтой вкусовых пристрастий. Поэтому они не прочь иногда побаловаться лягушачьими лапками. День был ненастный, дул сильный ветер. Когда сеньора Гальвани зашла в мясную лавку, то её глазам открылась ужасная картина. Лапки мёртвых лягушек, словно живые, дёргались, когда касались железных перил при сильном порыве ветра. Сеньора так надоедала мужу своими рассказами о близости мясника с нечистой силой, что профессор решил сам выяснить, что же происходит на самом деле.

Это был тот самый счастливый случай, который разом перевернул жизнь итальянского анатома и физиолога. Принеся домой лягушачьи лапки, Гальвани убедился в правдивости слов жены: они действительно дёргались, когда касались железных предметов. В то время профессору было всего 34 года. Последующие 25 лет он потратил на то, чтобы найти разумное объяснение этому удивительному явлению. Результатом многолетних трудов явилась книга «Трактаты о силе электричества при мышечном движении», которая стала настоящим бестселлером и взволновала умы многих исследователей. Впервые заговорили о том, что электричество есть в каждом из нас и что именно нервы являются своеобразными «электропроводами». Гальвани казалось, что мышцы накапливают в себе электричество, а при сокращении испускают его. Эта гипотеза требовала дальнейших исследований. Но политические события, связанные с приходом к власти Наполеона Бонапарта, помешали профессору закончить эксперименты. В силу своего вольнодумства Гальвани был в бесчестии изгнан из университета и через год после этих трагических событий скончался в возрасте шестидесяти одного года.

И всё-таки судьбе было угодно, чтобы труды Гальвани нашли своё продолжение. Соотечественник Гальвани Алессандро Вольта, прочитав его книгу, пришёл к мысли о том, что в основе живого электричества лежат химические процессы, и создал прообраз привычных для нас батареек.

Биохимия электричества

Прошло ещё два века, прежде чем человечеству удалось раскрыть тайну живого электричества. Пока не был изобретён электронный микроскоп, учёные не могли себе даже представить, что вокруг клетки находится настоящая «таможня» со своими строгими правилами «паспортного контроля». Мембрана животной клетки - тонкая, не видимая невооружённым глазом оболочка, - обладая полупроницаемыми свойствами, является надёжным гарантом сохранения жизнеспособности клетки (поддержания её гомеостаза).

Но вернёмся к электричеству. Какая существует взаимосвязь между мембраной клетки и живым электричеством?

Итак, первая половина XX века, 1936 год. В Англии зоолог Джон Юнг публикует методику препарирования нервного волокна головоногого моллюска. Диаметр волокна достигал 1 мм. Такой видимый глазу «гигантский» нерв сохранял способность проводить электричество даже вне организма в морской воде. Вот тот самый «золотой ключик», с помощью которого будет открыта дверь в тайны живого электричества. Прошло всего три года, и соотечественники Юнга - профессор Эндрю Хаксли и его ученик Алан Ходжкин, вооружившись электродами, поставили серию экспериментов на этом нерве, результаты которых перевернули мировоззрение и «зажгли зелёный свет» на пути к электрофизиологии.

Отправной точкой в этих исследованиях явилась книга Гальвани, а именно описание им тока повреждения: если мышцу разрезать, то электрический ток «выливается» из неё, что стимулирует её сокращение. Для того чтобы повторить эти эксперименты на нерве, Хаксли проткнул двумя тонкими, как волоски, электродами мембрану нервной клетки, поместив их таким образом в её содержимое (цитоплазму). Но вот неудача! Ему не удалось зарегистрировать электрические сигналы. Тогда он вынул электроды и поместил их на поверхность нерва. Результаты были печальными: ровным счётом ничего. Казалось, фортуна отвернулась от учёных. Оставался последний вариант - один электрод поместить внутрь нерва, а другой оставить на его поверхности. И вот он, счастливый случай! Уже через 0,0003 секунды был зарегистрирован электрический импульс с живой клетки. Было очевидно, что за такое мгновение импульс не может возникнуть вновь. Это означало только одно: заряд сконцентрирован на покоящейся неповреждённой клетке.

В последующие годы подобные опыты были проделаны на бесчисленном множестве других клеток. Оказалось, что все клетки заряжены и что заряд мембраны является неотъемлемым атрибутом её жизни. Пока клетка жива, у неё есть заряд. Однако оставалось всё ещё неясным, каким же образом клетка заряжается? Задолго до экспериментов Хаксли руcский физиолог Н. А. Бернштейн (1896–1966) опубликовал свою книгу «Электробиология» (1912). В ней он, словно провидец, теоретически раскрыл главную тайну живого электричества - биохимические механизмы возникновения заряда клетки. Удивительно, но через несколько лет данная гипотеза была блестяще подтверждена в экспериментах Хаксли, за что он и был удостоен Нобелевской премии. Итак, каковы же эти механизмы?

Как известно, всё гениальное просто. Так оказалось и в этом случае. Наш организм состоит на 70% из воды, а точнее, из раствора солей и белков. Если заглянуть внутрь клетки, то окажется, что её содержимое перенасыщено ионами К + (внутри их примерно в 50 раз больше, чем за её пределами). Между клетками, в межклеточном пространстве, преобладают ионы Na + (здесь их примерно в 20 раз больше, чем в клетке). Такое неравновесие активно поддерживается мембраной, которая, подобно регулировщику, пропускает через свои «ворота» одни ионы и не пропускает другие.

Мембрана, словно бисквитный пирог, состоит из двух рыхлых слоёв сложных жиров (фосфолипидов), толщу которых пронизывают, как бусины, белки, выполняющие самые разнообразные функции, в частности они могут служить своеобразными «воротами» или каналами. Внутри таких белков есть отверстия, которые могут открываться и закрываться с помощью особых механизмов. Для каждого типа ионов существуют свои каналы. Например, движение ионов К + возможно только через К + -каналы, а Nа + - через Na + -каналы.

Когда клетка находится в состоянии покоя, для ионов К + горит зелёный свет и они беспрепятственно покидают пределы клетки через свои каналы, направляясь туда, где их мало, чтобы уравновесить свою концентрацию. Помните школьный опыт по физике? Если взять стакан с водой и капнуть в него разведённый перманганат калия (марганцовку), то через некоторое время молекулы красящего вещества равномерно заполнят весь объём стакана, окрасив воду в розовый цвет. Классический пример диффузии. Аналогичным образом это происходит с ионами К + , которые есть в избытке в клетке и имеют всегда свободный выход через мембрану. Ионы же Nа + , как персона non grata , не имеют привилегий со стороны мембраны покоящейся клетки. В этот момент для них мембрана как неприступная крепость, проникнуть через которую почти невозможно, поскольку все Nа + -каналы закрыты.

Но при чём же здесь электричество, скажете вы? Всё дело в том, что, как было отмечено выше, наш организм состоит из растворённых солей и белков. В данном случае речь идёт о солях. Что такое растворённая соль? Это дуэт связанных между собой положительных катионов и отрицательных анионов кислот. Например, раствор хлорида калия - это K + и Сl – и т. д. Кстати, физиологический раствор, который широко используется в медицине для внутривенных вливаний, представляет собой раствор хлорида натрия - NaCl (поваренной соли) в концентрации 0,9%.

В естественных условиях просто ионов К + или Nа + поодиночке не бывает, они всегда находятся с анионами кислот - SO 4 2– , Cl – , PO 4 3– и т. д., и в обычных условиях мембрана непроницаема для отрицательных частиц. Это означает, что, когда ионы К + движутся через свои каналы, связанные с ними анионы, как магниты, тянутся за ними, но, не имея возможности выйти наружу, скапливаются на внутренней поверхности мембраны. Поскольку за пределами клетки, в межклеточном пространстве, преобладают ионы Nа + , то есть положительно заряженные частицы, плюс к ним постоянно просачиваются ионы К + , на наружной поверхности мембраны концентрируется избыточный положительный заряд, а на её внутренней поверхности - отрицательный. Так что клетка в состоянии покоя «искусственно» сдерживает неравновесие двух важных ионов - К + и Nа + , в силу чего мембрана поляризуется за счёт разности зарядов по обе её стороны. Заряд в состоянии покоя клетки называют мембранным потенциалом покоя, который равен примерно -70 мВ. Именно такой величины заряд был впервые зарегистрирован Хаксли на гигантском нерве моллюска.

Когда стало ясно, откуда берётся «электричество» в клетке в состоянии покоя, тут же возник вопрос: куда же оно девается, если клетка работает, например когда наши мышцы сокращаются? Истина лежала на поверхности. Достаточно было заглянуть внутрь клетки в момент её возбуждения. Когда клетка реагирует на внешние или внутренние воздействия, в этот момент молниеносно, как по команде, открываются все Na + -каналы и ионы Na + , словно снежный ком, за доли секунд устремляются внутрь клетки. Таким образом, за мгновение, в состоянии возбуждения клетки, ионы Na + уравновешивают свою концентрацию по обе стороны мембраны, ионы К + по-прежнему медленно покидают клетку. Выход ионов К + настолько медленный, что, когда ион Na + наконец-то прорывается через неприступные стены мембраны, их там остаётся ещё достаточно много. Теперь уже внутри клетки, а именно на внутренней поверхности мембраны, сконцентрируется избыточный положительный заряд. На её же внешней поверхности будет отрицательный заряд, потому что, как и в случае с К + , за Na + устремится целая армия отрицательных анионов, для которых мембрана по-прежнему непроницаема. Удерживаемые на её внешней поверхности электростатическими силами притяжения, эти «осколки» от солей создадут здесь отрицательное электрическое поле. Это означает, что в момент возбуждения клетки мы будем наблюдать реверсию заряда, то есть смену его знака на противоположный. Этим объясняется, почему заряд при возбуждении клетки меняется с отрицательного на положительный.

Есть и ещё один важный момент, который в далёкие времена описывал Гальвани, но не смог правильно объяснить. Когда Гальвани повреждал мышцу, она сокращалась. Тогда ему казалось, что это ток повреждения и он «выливается» из мышцы. В какой-то степени слова его были пророческими. Клетка действительно теряет свой заряд, когда работает. Заряд существует только тогда, когда есть разность между концентрациями ионов Na + /K + . При возбуждении клетки численность ионов Na + по обе стороны мембраны одинакова, к этому же состоянию стремится и К + . Именно поэтому при возбуждении клетки заряд уменьшается и становится равен +40 мВ.

Когда загадку «возбуждения» разгадали, неизбежно возник другой вопрос: как же клетка приходит в норму? Каким образом заряд на ней возникает вновь? Ведь не умирает же она, после того как поработает. И действительно, через несколько лет нашли этот механизм. Им оказался белок, встроенный в мембрану, но это был необычный белок. С одной стороны, выглядел он так же, как и белки-каналы. А с другой - в отличие от своих собратьев, этот белок «дорого брал за свою работу», а именно энергией, такой ценной для клетки. Причём пригодная для его работы энергия должна быть особая, в виде молекул АТФ (аденозинтрифосфорной кислоты). Эти молекулы специально синтезируются на «энергетических станциях» клетки - митохондриях, бережно там хранятся и при необходимости с помощью специальных переносчиков доставляются к месту назначения. Энергия из этих «боеголовок» высвобождается при их распаде и расходуется на различные нужды клетки. В частности, в нашем случае эта энергия требуется на работу белка, названного Na/K-АТФаза, основная функция которого заключается в том, чтобы, подобно челноку, перевозить Na + наружу из клетки, а К + - в обратном направлении.

Таким образом, чтобы восстановить утраченные силы, необходимо поработать. Задумайтесь, тут скрывается реальный парадокс. Когда клетка работает, то на уровне клеточной мембраны этот процесс протекает пассивно, а для того чтобы отдохнуть, ей требуется энергия.

Как нервы «разговаривают» друг с другом

Если уколоть палец, то рука тут же отдёрнется. То есть при механическом воздействии на рецепторы кожи возбуждение, возникшее в данной локальной точке, достигает головного мозга и возвращается обратно, на периферию, для того чтобы мы могли адекватно отреагировать на ситуацию. Это пример врождённой реакции, или безусловных рефлексов, к которым относятся множество защитных ответов, таких как мигание, кашель, чихание, чесание и т. д.

Каким же образом возбуждение, возникнув на мембране одной клетки, способно двигаться дальше? Прежде чем ответить на этот вопрос, давайте познакомимся со строением нервной клетки - нейроном, смыл «жизни» которого состоит в проведении возбуждения или нервных импульсов.

Итак, нейрон, словно летящая комета, состоит из тела нервной клетки, вокруг которого ореолом располагаются множество маленьких отростков - дендритов, и длинного «хвоста» - аксона. Именно эти отростки служат своеобразными проводами, по которым течёт «живой ток». Поскольку вся эта сложная конструкция представляет собой единую клетку, то отростки нейрона обладают таким же набором ионов, как и его тело. Что представляет собой процесс возбуждения локального участка нейрона? Это некое возмущение «спокойствия» его внешней и внутренней среды, выражающееся в виде направленного движения ионов. Возбуждение, возникнув в том месте, куда пришёлся раздражитель, далее по цепочке распространяется по тем же принципам, что на этом участке. Только теперь раздражителем для соседних участков будет являться не внешний стимул, а внутренние процессы, вызванные потоками ионов Na + и K + и изменением заряда мембраны. Этот процесс подобен тому, как распространяются волны от камешка, брошенного в воду. Так же, как и в случае с камешком, биотоки по мембране нервного волокна распространяются круговыми волнами, вызывая возбуждение всё более отдалённых участков.

В эксперименте возбуждение от локальной точки распространяется далее в обоих направлениях. В реальных же условиях проведение нервных импульсов осуществляется однонаправленно. Связано это с тем, что тот участок, который поработал, нуждается в отдыхе. А отдых у нервной клетки, как мы уже знаем, активный и связан с затратами энергии. Возбуждение клетки есть «потеря» её заряда. Именно поэтому, как только клетка поработает, её способность к возбуждению резко падает. Этот период называют рефрактерным, от французского слова refractaire - невосприимчивый. Такая невосприимчивость может быть абсолютной (сразу же после возбуждения) или относительной (по мере восстановления заряда мембраны), когда возможно вызвать ответную реакцию, но чрезмерно сильными раздражителями.

Если задаться вопросом - какого цвета наш мозг, то окажется, что подавляющая его масса, за небольшим исключением, серо-белых тонов. Тела и короткие отростки нервных клеток серые, а длинные отростки белые. Белые они потому, что сверху на них имеется дополнительная изоляция в виде «жировых» или миелиновых подушек. Откуда возникают эти подушки? Вокруг нейрона существуют особые клетки, названные по имени немецкого нейрофизиолога, который их впервые описал, - шванновские клетки. Они, словно няньки, помогают нейрону расти и, в частности, выделяют миелин, представляющий собой своеобразное «сало» или липид, которым бережно окутываются участки растущего нейрона. Однако такой наряд покрывает не всю поверхность длинного отростка, а отдельные участки, между которыми аксон остаётся голым. Оголённые места называют перехватами Ранвье.

Интересно, но от того, как «одет» нервный отросток, зависит скорость проведения возбуждения. Нетрудно догадаться - специальная «форма одежды» существует для того, чтобы увеличить эффективность прохождения биотоков по нерву. Действительно, если в серых дендритах возбуждение двигается как черепаха (от 0,5 до 3 м/с), последовательно, не пропуская ни одного участка, то в белом аксоне нервные импульсы прыгают по «оголённым» участкам Ранвье, что существенно повышает скорость их проведения до 120 м/с. Такие быстрые нервы иннервируют в основном мышцы, обеспечивая защиту организма. Внутренние же органы не нуждаются в такой скорости. К примеру, мочевой пузырь может долго растягиваться и посылать импульсы о своём переполнении, в то время как рука должна отдёрнуться сразу от огня, иначе это грозит повреждением.

Мозг взрослого человека весит в среднем 1300 г. Эту массу составляет 10 10 нервных клеток. Такое огромное количество нейронов! С помощью каких механизмов возбуждение с одной клетки попадает на другую?

Разгадка тайны коммуникации в нервной системе имеет свою историю. В середине XIX века французский физиолог Клод Бернар получил ценную посылку из Южной Америки с ядом кураре, тем самым, которым индейцы смазывали наконечники стрел. Учёный увлекался изучением действия ядов на организм. Было известно, что животное, сражённое таким ядом, умирает от удушья вследствие паралича дыхательных мышц, но никто не знал, как именно действует молниеносный убийца. Для того чтобы это понять, Бернар проделал простой опыт. Он растворил яд в чашке Петри, поместил туда мышцу с нервом и увидел, что если в яд погрузить только нерв, то мышца остаётся здоровой и по-прежнему может работать. Если отравить ядом только мышцу, то и в этом случае сохраняется её способность к сокращению. И лишь когда в яд помещали участок между нервом и мышцей, можно было наблюдать типичную картину отравления: мышца становилась неспособной сокращаться даже при очень сильных электрических воздействиях. Стало очевидно, что между нервом и мышцей существует «разрыв», на который и действует яд.

Оказалось, подобные «разрывы» можно найти в любой точке организма, вся нейронная сеть буквально ими пронизана. Были найдены и другие вещества, например никотин, который избирательно действовал на загадочные места между нервом и мышцей, вызывая её сокращение. Поначалу эти невидимые связи называли мионевральным соединением, а впоследствии английский нейрофизиолог Чарльз Шеррингтон дал им название синапсов, от латинского слова synapsis - соединение, связь. Однако жирную точку в этой истории поставил австрийский фармаколог Отто Леви, которому удалось найти посредника между нервом и мышцей. Говорят, ему привиделось во сне, что некое вещество «выливается» из нерва и заставляет мышцу работать. На следующее утро он твёрдо решил: нужно искать именно это вещество. И он его нашёл! Всё оказалось достаточно просто. Леви взял два сердца и выделил на одном из них самый крупный нерв - nervus vagus . Заранее предвидя, что из него должно что-то выделиться, он соединил системой трубочек эти два «мышечных мотора» и стал раздражать нерв. Леви знал - при его раздражении сердце останавливается. Однако останавливалось не только то сердце, на которое действовал раздражённый нерв, но и второе, соединённое с ним раствором. Немного позже Леви удалось выделить в чистом виде это вещество, которое получило название «ацетилхолин». Таким образом, было найдено неопровержимое доказательство наличия посредника в «разговоре» между нервом и мышцей. Это открытие удостоено Нобелевской премии.

А дальше всё пошло гораздо быстрее. Оказалось, открытый Леви принцип общения нервов с мышцами универсальный. С помощью такой системы общаются не только нервы и мышцы, но и сами нервы друг с другом. Однако, несмотря на тот факт, что принцип такой коммуникации один, посредники, или, как впоследствии их стали обозначать, медиаторы (от латинского слова mediator - посредник), могут быть разные. У каждого нерва он свой, как пропуск. Эту закономерность установил английский фармаколог Генри Дейл, за что тоже был удостоен Нобелевской премии. Итак, язык нейронного общения стал понятен, оставалось лишь только увидеть, как эта конструкция выглядит.

Как работает синапс

Если посмотреть на нейрон в электронный микроскоп, то мы увидим, что он, словно новогодняя ёлка, весь увешан какими-то пуговками. Таких «пуговок», или, как вы уже догадались, синапсов, только на одном нейроне может быть до 10 000. Посмотрим внимательнее на одну из них. Что мы увидим? На концевом участке нейрона длинный отросток утолщается, поэтому он нам кажется в виде пуговки. В этом утолщении аксон как бы истончается и теряет своё белое одеяние в виде миелина. Внутри же «пуговки» находится огромное количество пузырьков, заполненных каким-то веществом. В 1954 году Джордж Паладе догадался, что это есть не что иное, как хранилище для медиаторов (через 20 лет за эту догадку ему дали Нобелевскую премию). Когда возбуждение доходит до концевой станции длинного отростка, то медиаторы высвобождаются из своего заточения. Для этого используются ионы Са 2+ . Двигаясь к мембране, они сливаются с ней, затем лопаются (экзоцитоз), и медиатор под давлением попадает в пространство между двумя нервными клетками, которое получило название синаптической щели. Оно ничтожно мало, поэтому молекулы медиатора быстро попадают на мембрану соседнего нейрона, на которой в свою очередь находятся особые антенны, или рецепторы (от латинского слова recipio - брать, принимать), улавливающие посредника. Происходит это по принципу «ключ к замку» - геометрическая форма рецептора полностью соответствует форме посредника. Обменявшись «рукопожатием», медиатор и рецептор вынуждены расстаться. Встреча их весьма короткая и последняя для медиатора. Достаточно всего доли секунды, чтобы медиатор запустил возбуждение на соседнем нейроне, после чего он разрушается с помощью специальных механизмов. А потом эта история повторится ещё и ещё, и так до бесконечности будет бежать живое электричество по «нервным проводам», скрывая от нас множество тайн и тем самым привлекая к себе своей загадочностью.

Нужно ли говорить о значимости открытий в области электрофизиологии? Достаточно сказать, что за приоткрытие завесы в мир живого электричества присуждено семь Нобелевских премий. Сегодня львиная доля фармацевтической промышленности построена на этих фундаментальных открытиях. К примеру, сейчас поход к дантисту не такое уж страшное испытание. Один укол лидокаина - и в месте инъекции Na + -каналы временно заблокируются. И вы уже не почувствуете болезненных процедур. У вас заболел живот, врач назначит препараты (но-шпа, папаверин, платифилин и т. д.), в основе действия которых - блокада рецепторов, чтобы с ними не мог связаться медиатор ацетилхолин, запускающий многие процессы в желудочно-кишечном тракте, и т. д. В последнее время активно развивается серия фармакологических препаратов центрального действия, направленных на улучшение памяти, речевой функции и мыслительной деятельности.

«Электричество в живых организмах»


Что такое, кем открыто, что собой представляет электричество

Впервые на электрический заряд обратил внимание Фалес Милетский. Он провел эксперимент, потер янтарь шерстью, после таких простых движений янтарь стал обладать свойством, притягивать мелкие предметы. Это свойство больше походит не на электрические заряды, а на магнетизм. Но в 1600 году Гильберт установил различие между этими двумя явлениями.

В 1747 - 53 Б. Франклин изложил первую последовательную теорию электрических явлений, окончательно установил электрическую природу молнии и изобрёл молниеотвод.

Во 2-й половине 18 в. началось количественное изучение электрических и магнитных явлений. Появились первые измерительные приборы - электроскопы различных конструкций, электрометры. Г. Кавендиш (1773) и Ш. Кулон (1785) экспериментально установили закон взаимодействия неподвижных точечных электрических зарядов (работы Кавендиша были опубликованы лишь в 1879). Этот основной закон электростатики (Кулона закон) впервые позволил создать метод измерения электрических зарядов по силам взаимодействия между ними.

Следующий этап в развитии науки об Э. связан с открытием в конце 18 в. Л. Гальвани "животного электричества"

Главным ученым в изучении электричества и электрических зарядов является Майкл Фарадей. С помощью опытов он доказал, что действия электрических зарядов и токов не зависят от способа их получения. Также в 1831 Фарадей открыл индукцию электромагнитную - возбуждение электрического тока в контуре, находящемся в переменном магнитном поле. В 1833 - 34 Фарадей установил законы электролиза; эти его работы положили начало электрохимии.

И так, что же такое электричество. Электричество - это совокупность явлений, обусловленных существованием, движением и взаимодействием электрически заряженных тел или частиц. Явление электричество можно встретить почти везде.

К примеру, если сильно потереть пластмассовую расческу о волосы, то к ней начнут прилипать кусочки бумаги. А если потереть о рукав воздушный шарик, то он прилипнет к стене. При трении янтаря, пластмассы и ряда других материалов в них возникает электрический заряд. Само слово «электрический» происходит от латинского слова electrum, означающего «янтарь».

Откуда же берется электричество

Все окружающие нас объекты содержат миллионы электрических зарядов, состоящих из частиц, находящихся внутри атомов - основы всей материи. Ядро большинства атомов включает два вида частиц: нейтроны и протоны. Нейтроны не имеют электрического заряда, в то время как протоны несут в себе положительный заряд. Вокруг ядра вращаются еще одни частицы - электроны, имеющие отрицательный заряд. Как правило, каждый атом имеет одинаковое количество протонов и электронов, чьи равные по величине, но противоположные заряды уравновешивают друг друга. В результате мы не ощущаем никакого заряда, а вещество считается незаряженным. Однако, если мы каким-либо образом нарушим это равновесие, то данный объект будет обладать общим положительным или отрицательным зарядом в зависимости от того, каких частиц в нем останется больше - протонов или электронов.

Электрические заряды влияют друг на друга. Положительный и отрицательный заряды притягиваются друг к другу, а два отрицательных или два положительных заряда отталкиваются друг от друга. Если поднести к предмету отрицательно заряженную леску, отрицательные заряды предмета переместятся на другой его конец, а положительные заряды, наоборот, переместятся поближе к леске. Положительные и отрицательные заряды лески и предмета притянут друг друга, и предмет прилипнет к леске. Этот процесс называется электростатической индукцией, и о предмете говорят, что он попадает в электростатическое поле лески.

Что такое, кем открыто, что собой представляют живые организмы

Живые организмы - главный предмет изучения в биологии. Живые организмы не только вписались в существующий мир, но и изолировали себя от него при помощи специальных барьеров. Среда, в которой образовались живые организмы, является пространственно – временным континуумом событий, то есть совокупностью явлений физического мира, которая определяется характеристиками и положением Земли и Солнца.

Для удобства рассмотрения все организмы распределяются по разным группам и категориям, что составляет биологическую систему их классификации. Самое общее их деление на ядерные и безъядерные. По числу составляющих организм клеток их делят на одноклеточные и многоклеточные. Особое место между ними занимают колонии одноклеточных.

На все живые организмы, т.е. на растения и животные действуют абиотические факторы среды (факторы неживой природы), особенно температура, свет и увлажненность. В зависимости от влияния факторов неживой природы, растения и животных делят на различные группы и у них появляются приспособленности к влиянию этих абиотических факторов.

Как уже было сказано, живые организмы распределяются на большое количество. Сегодня мы рассмотрим живые организмы, на разделе их на теплокровных и хладнокровных:

с постоянной температурой тела (теплокровные);

с непостоянной температурой тела (хладнокровные).

Организмы с непостоянной температурой тела (рыбы, земноводные, пресмыкающиеся). Организмы с постоянной температурой тела (птицы, млекопитающие).

Чем связаны физика и живые организмы

Понимание сущности жизни, ее возникновения и эволюции определяет все будущее человечества на Земле как вида живого. Конечно, в настоящее время накоплен огромный материал, осуществляется его тщательное изучение, особенно в области молекулярной биологии и генетики, есть схемы или модели развития, есть даже практическое клонирование человека.

Более того, биология сообщает множество интересных и важных подробностей живых организмах, упуская что-то принципиальное. Само слово «физика», по Аристотелю, означает «физис» - природа. Действительно, вся материя Вселенной, а следовательно мы сами, состоит из атомов и молекул, для которых уже получены количественные и в целом правильные законы их поведения, в том числе и на квантово-молекулярном уровне.

Тем более, что физика была и остается важным фактором общего развития изучения живых организмов в целом. В этом смысле физика как феномен культуры, а не только как область знания, создает наиболее близкое для биологии социокультурное понимание. Вероятно, именно в физическом познании отражены стили мышления. Логико-методологические аспекты познания и самой естественной науки, как известно, почти целиком основаны на опыте физических наук.

Поэтому задача научного познания живого, может быть, и состоит в обосновании возможности применения физических моделей и представлений к определению развития природы и общества также на основе физических закономерностей и научного анализа получаемых знаний о механизме процессов в живом организме. Как говорил еще 25 лет тому назад М.В. Волькенштейн, «в биологии как науке о живом возможны только два пути: либо признать невозможным объяснение жизни на основе физики и химии, либо такое объяснение возможно и его надо найти, в том числе на основе общих закономерностей, характеризующих строение и природу материи, вещества и поля».

Электричество в различных классах живых организмах

В конце XVIII века знаменитые ученые Гальвани и Вольта обнаружили электричество у животных. Первыми животными, на которых ученые делали опыт, чтобы подтвердить свое открытие, были лягушки. На клетку воздействуют различные факторы внешней среды - раздражители: физические - механические, температурные, электрические;

Электрическая активность оказалась неотъемлемым свойством живой материи. Электричество генерирует нервные, мышечные и железистые клетки всех живых существ, однако наиболее развита эта способность у рыб. Рассмотрим явление электричество у теплокровных живых организмах.

В настоящее время известно, что из 20 тыс. современных видов рыб около 300 способны создавать и использовать биоэлектрические поля. По характеру генерируемых разрядов такие рыбы делятся на сильноэлектрические и слабоэлектрические. К первым относятся пресноводные южноамериканские электрические угри, африканские электрические сомы и морские электрические скаты. Эти рыбы генерируют очень мощные разряды: угри, например, напряжением до 600 вольт, сомы - 350. Напряжение тока крупных морских скатов невысоко, поскольку морская вода является хорошим проводником, но сила тока их разрядов, например ската Торпедо, достигает иногда 60 ампер.

Рыбы второго типа, например, мормирус и другие представители отряда клюворылообразных не излучают отдельных разрядов. Они посылают в воду серии почти непрерывных и ритмичных сигналов (импульсов) высокой частоты, этого поля проявляется в виде так называемых силовых линий. Если в электрическое поле попадает объект, отличающийся по своей электропроводности от воды, конфигурация поля изменяется: предметы с большей проводимостью сгущают вокруг себя силовые лилии, а с меньшей - рассредоточивают. Рыбы воспринимают эти изменения с помощью электрических рецепторов, расположенных у большинства рыб в области головы, и определяют местонахождение объекта. Таким образом эти рыбы осуществляют подлинную электрическую локацию.

Почти все они охотятся преимущественно ночью. Некоторые из них обладают плохим зрением, поэтому в процессе длительной эволюции и выработался у этих рыб такой совершенный способ для обнаружения на расстоянии пищи, врагов, различных предметов.

Приемы, используемые электрическими рыбами при ловле добычи и обороне от врагов, подсказывают человеку технические решения при разработке установок для электролова и отпугивания рыб. Исключительные перспективы открывает моделирование электрических систем локации рыб. В современной подводной локационной технике пока не существует систем поиска и обнаружения, которые работали бы по образцу и подобию электролокаторов, созданных в мастерской природы. Учеными многих стран ведется упорная работа по созданию подобной аппаратуры.

Электричество в живой природе Травников Андрей 9 «Б»

Электричество Электричество - совокупность явлений, обусловленных существованием, взаимодействием и движением электрических зарядов.

Электричество в теле человека В организме человека присутствуют множество химических веществ (например, кислород, калий, магний, кальций или натрий), реакции которых друг с другом способствуют возникновению электрической энергии. В числе прочего, это происходит в процессе так называемого «клеточного дыхания» - извлечения клетками тела энергии, необходимой для жизнедеятельности. Например, в сердце человека есть клетки, которые в процессе поддержания сердечного ритма поглощают натрий и выделяют калий, что создаёт в клетке положительный заряд. Когда заряд достигает определённого значения, клетки обретают способность воздействовать на сокращения сердечной мышцы.

Молнии Молния - гигантский электрический искровой разряд в атмосфере, обычно может происходить во время грозы, проявляющийся яркой вспышкой света и сопровождающим её громом.

Электричество у рыб Все виды электрических рыб имеют особый орган, который вырабатывает электричество. С его помощью животные охотятся, защищаются приспосабливаясь к жизни в водной среде. Электрический орган у всех рыб сконструирован одинаково, но отличается по размерам и местоположению. Но почему ни у одного наземного животного не обнаружено электрического органа? Причина этого заключается в следующем. Только вода с растворенными в ней солями является прекрасным проводником электричества, что позволяет использовать действие электрического тока на расстоянии.

Электрический скат Электрические скаты - отряд хрящевых рыб, у которых по бокам тела между головой и грудными плавниками расположены почкообразные парные электрические органы. В отряде числятся 4 семейства и 69 видов. Электрические скаты известны своей способностью производить электрический заряд, напряжение которого (в зависимости от вида) колеблется от 8 до 220 вольт. Скаты используют его в обороне и могут оглушить добычу или врага. Они обитают в тропических и субтропических водах всех океанов

Электрический угорь Длина от 1 до 3 м, вес до 40 кг. Кожа у электрического угря голая, без чешуи, тело сильно удлинённое, округлое в передней части и несколько сжатое с боков в задней части. Окраска взрослых электрических угрей оливково-коричневая, нижняя сторона головы и горла ярко-оранжевая, край анального плавника светлый, глаза изумрудно-зелёные. Генерирует разряд напряжением до 1300 В и силой тока до 1 A. Положительный заряд находится в передней части тела, отрицательный - в задней. Электрические органы используются угрём для защиты от врагов и для парализации добычи, которую составляют в основном некрупные рыбы.

Венерина мухоловка Венерина мухоловка - небольшое травянистое растение с розеткой из 4-7 листьев, которые растут из короткого подземного стебля. Стебель - луковицеобразный. Листья размером от трёх до семи сантиметров, в зависимости от времени года, длинные листья-ловушки обычно формируются после цветения. В природе питается насекомыми, иногда могут попадаться моллюски (слизни). Движение листьев происходит за счет электрического импульса.

Мимоза стыдливая Прекрасным наглядным доказательством проявления токов действия у растений является механизм складывания листьев под влиянием внешних раздражителей у мимозы стыдливой имеющих ткани, способные резко сокращаться. Если поднести к ее листьям чужеродный предмет, то они закроются. От этого и происходит название растения.

Подготовив эту презентацию, я узнал много нового об организмах в живой природе, и о том, как они применяют электричество в своей жизни.

Источники http://wildwildworld.net.ua/articles/elektricheskii-skat http://flowerrr.ru/venerina-muholovka http:// www.valleyflora.ru/16.html https://ru.wikipedia.org

В живой природе существует немало процессов, связанных с электрическими явлениями. Рассмотрим некоторые из них.

Многие цветы и листья имеют способность закрываться и раскрываться в зависимости от времени и суток. Это обусловлено электрическими сигналами, представляющими собой потенциал действия. Можно заставить листья закрываться с помощью внешних электрических раздражителей. Кроме то го, у многих растений возникают токи повреждений. Срезы листьев, стебля всегда заряжены отрицательно по отношению к нормальной ткани.

Если взять лимон или яблоко и разрезать, а потом приложить к кожуре два электрода, то они не выявят разницы потенциалов. Если же один электрод приложить к кожуре, а другой к внутренней части мякоти, то появится разность потенциалов, и гальванометр отметит появление силы тока.

Изменение потенциала некоторых растительных тканей в момент их разрушения исследовал индийский ученый Бос. В частности, он соединил внешнюю и внутреннюю часть горошины гальванометром. Горошину он нагревал до температуры до 60С, при этом был зарегистрирован электрический потенциал в 0,5 В. Этим же ученым была исследована подушечка мимозы, которую он раздражал короткими импульса ми тока.

При раздражении возникал потенциал действия. Реакция мимозы была не мгновенной, а с запаздыванием на 0,1 с. Кроме того, в проводящих путях мимозы распространялся другой тип возбуждения, так называемая медленная волна, появляющаяся при повреждениях. Эта волна минует по душечки, достигая стебля, вызывает возникновение потенциала действия, передающегося вдоль стебля и приводящего к опусканию близлежащих листьев. Мимоза реагирует движением листа на раздражение подушечки током 0,5 мкА. Чувствительность языка человека в 10 раз ниже.


Не менее интересные явления, связанные с электричеством, можно обнаружить и у рыб. Древние греки остерегались встречаться в воде с рыбой, которая заставляла цепенеть животных и людей. Эта рыба была электрическим скатом и но сила название торпеда.

В жизни разных рыб роль электричества различна. Некоторые из них с помощью специальных органов создают в воде мощные электрические разряды. Так, например, пресноводный угорь создает напряжение такой силы, что может отразить нападение противника или парализовать жертву. Электрические органы рыбы состоят из мышц, которые потеряли способность к сокращению. Мышечная ткань служит проводником, а соединительная - изолятором. К органу идут нервы от спинного мозга. А в целом он представляет собой мелкопластинчатую структуру из чередующихся элементов. Угорь имеет от 6000 до 10000 соединенных последователь но элементов, образующих колонку, и около 70 колонок в каждом органе, расположенных вдоль тела.

У многих рыб (гимнарха, рыбыножа, гнатонемуса) голова заряжается положительно, хвост - отрицательно, а вот у электрического сома, наоборот, хвост - положительно, а голова - отрицательно. Свои электрические свойства рыбы используют как для атаки, так и для защиты, а также для того, чтобы отыскивать жертву, ориентироваться в мутной воде, опознавать опасных противников.

Существуют также слабоэлектрические рыбы. Они не имеют каких либо электрических органов. Это обыкновенные рыбы: караси, карпы, пескари и др. Они чувствуют электрическое поле и излучают слабый электрический сигнал.

Сначала биологи обнаружили странное поведение небольшой пресноводной рыбки - американского сомика. Он чувствовал приближение к нему металлической палочки в воде на расстоянии нескольких миллиметров. Английский ученый Ганс Лиссман заключал в парафиновую или стеклянную оболочку металлические предметы, опускал их в воду, но обмануть нильского сомика и гимнархуса ему не удалось. Рыбка чувствовала металл. Действительно, оказалось, что рыбы имеют специальные органы, которые воспринимают слабую напряженность электрического поля.

Проверяя чувствительность электрорецепторов у рыб, ученые проводили опыт. Закрывали аквариум с рыбкой темной тканью или бумагой и водили рядом по воздуху небольшим магнитом. Рыбка чувствовала магнитное поле. Потом исследователи просто водили возле аквариума руками. И она реагировала даже на самое слабое, создаваемое человеческой рукой, биоэлектрическое поле.

Рыбы не хуже, а порой и лучше самых чувствительных в мире приборов регистрируют электрическое поле и замечают малейшее изменение его напряженности. Рыбы, как оказалось, не только плавающие “гальванометры”, но и плавающие “электрогенераторы”. Они излучают в воду электрический ток и создают вокруг себя электрическое поле, значительно большее по силе, чем возникающее вокруг обычных живых клеток.

С помощью электрических сигналов рыбы могут даже особым образом “переговариваться”. Угри, например, при виде пищи начинают генерировать импульсы тока определенной частоты, привлекая тем самым своих собратьев. А если двух рыб поместить в один аквариум, частота их электрических разрядов сразу же увеличивается.

Рыбы соперники определяют силу своего противника по силе излучаемых им сигналов. Другие животные таких чувств не имеют. Почему же только рыбы наделены этим свойством?

Рыбы живут в воде. Морская вода прекрасный проводник. Электрические волны распространяются в ней, не затухая, на тысячи километров. Кроме того, рыбы имеют физиологические особенности строения мышц, которые со временем стали “живыми генераторами”.

Способность рыб аккумулировать электрическую энергию, делает их идеальными аккумуляторами. Если бы удалось подробнее разобраться с деталями их работы, произошел бы переворот в технике, в плане создания аккумуляторов. Электролокация и подводная связь рыб позволила разработать систему для беспроводной связи между рыболовным судном и тралом.

Уместно было бы закончить высказыванием, которое было написано рядом с обычным стеклянным аквариумом с электрическим скатом, представленном на выставке Английского научного Королевского общества в 1960 г. В аквариум были опущены два электрода, к которым был подключен вольтметр. Когда рыба находилась в состоянии покоя, вольтметр показывал 0 В, при движении рыбы - 400 В. Природу этого электрического явления, наблюдаемого задолго до организации Английского Королевского общества, человек разгадать до сих пор не может. Тайна электрических явлений в живой природе и сейчас будоражит умы ученых и требует своего решения.

Человек стал использовать электричество совсем недавно, каких-нибудь сто с небольшим лет назад. В животном мире электричество используется уже много миллионов лет. Некоторые виды рыб способны производить электрический ток. Разряды электрического тока они применяют для умерщвления жертвы, для защиты от врагов и... для общения.

Электрический сом

Кошачьи акулы способны обнаружить по местному изменению электрического поля Земли добычу, зарывшуюся в придонный ил, с помощью специальных органов чувств (так называемых ампул Лоренцини), разбросанных по поверхности тела, особенно вблизи головы.

Африканские рыбаки ощущают на себе мощность электричества сома, когда он попадается к ним на крючок. Ток от рыбы движется по леске, по удилищу и бьет по рукам рыбака. К счастью, удар электричеством сома не смертелен. Но бывали случаи, когда наступивший на электрического сома человек терял на некоторое время сознание.

Другие рыбы не только чувствительны к изменениям электрических полей среды, но и сами способны генерировать ток малой или большой силы. Распространенный на востоке Атлантики и в Средиземном море обыкновенный скат достигает в длину 60 см и дает разряды в 50 вольт. Этого бывает достаточно, чтобы оглушить или убить составляющих его пищу мелких рыбешек и рачков. Для человека обыкновенный скат практически не опасен. Небольшие электрические разряды этой рыбы ощущаются для него как сильный щипок. Гораздо опаснее самый крупный скат из рода Торпедо, который также обитает в Атлантическом океане и Средиземном море. Длина этой рыбы достигает двух метров, а весит она около 100 кг. Этот гигант среди электрических скатов способен образовывать электрический ток напряжением до 200 вольт. Разряд электрического тока такой мощности, тем более в соленой воде, способен основательно потрясти человека.

В водах знаменитой африканской реки Нил живет электрический сом. Эта крупная толстая рыба может достигать в длину одного метра. Спина у нее темно-коричневая, бока бурые, а брюхо желтое. Эта ленивая малоподвижная рыба большую часть своей жизни проводит лежа на дне. Мощность электрического «прибора» сома очень велика и может быть больше, чем в городской бытовой электросети.

Электрический угорь

На другом континенте, в Южной Америке, живет электрический угорь. Это длинная округлая рыба с гладкой, без чешуи, кожей. Обычно его длина не превышает одного метра. Иногда встречаются электрические угри длиной до трех метров. Окраска угрей зеленовато-коричневая. Горло - ярко-оранжевого цвета.

Электрический угорь создает самое мощное напряжение. У крупных особей мощность электрических разрядов может достигать 660 вольт. Это почти в три раза больше, чем в квартирной розетке.

Свое электричество угорь использует в основном для умерщвления жертвы. Приблизившись к рыбе или лягушке, электрический угорь пускает в ход свое грозное оружие, и жертва оказывается парализованной или умерщвленной. Угорь неспешно приближается к обездвиженной жертве и проглатывает ее.

Нильский сомик-длиннорыл использует электричество для обнаружения своих врагов. У него в хвосте имеется электрический «приборчик», с помощью которого он образует постоянное электрическое облачко вокруг своего тела. Стоит какому-нибудь животному войти в это облачко, как длиннорыл сразу почувствует неладное. По изменению электрического облачка он может определить не только размеры объекта, но и его форму. Исследовав незваного гостя, рыбка решает, что ей предпринять: или поскорее удрать, или поглубже зарыться в ил, или оставаться на месте.

Электрический скат

Постоянная среда обитания рыб - вода - обладает большой электропроводностью. По этой причине электрические поля, вырабатываемые живыми генераторами, достигают чувствительных клеток других рыб почти без потерь, и, таким образом, появляется возможность передачи электрического сигнала на значительное расстояние.

У электрических рыб первые удары самые сильные, а последующие становятся все слабее и слабее. Чтобы снова производить сильные электрические удары, рыбе необходимо подзарядиться: полежать спокойно на дне.

С помощью электричества рыбы могут «переговариваться» на расстоянии 7-10 метров. Двух нильских сомиков помещали в аквариум, разделенный слоем материи, чтобы рыбы не могли видеть друг друга. С помощью специальных приборов удалось установить, что рыбы постоянно общались между собой посредством электрических сигналов. Если одну рыбу беспокоили - трогали палочкой, она заявляла протест образованием электрических разрядов. Вторая тоже не оставалась безучастной.

В природе при разделе территории сомики разряжают свои электрические батареи выстроившись напротив друг друга. Если же силы неравны, то один длиннорыл подавляет разряды противника просто «не давая ему сказать слова», и тот поспешно от ступает. В драках сомики стараются откусить противнику хвостовой стебель с жизненно важным электрическим органом.

В продолжение темы:
Ленточный фундамент

Спагетти с соусом из рыбной консервы — этот недорогой рецепт мы увидели на пачке купленных нами спагетти. Рецепт показался нам очень простым, ну и мы решили попробовать...

Новые статьи
/
Популярные