Найти функцию распределения F(x). Независимые повторные испытания и формула бернулли

Найти средний балл учащихся, которые во время экзамена получили следующие оценки:5; 3; 4; 5; 3; 2; 3; 5; 4; 3 3,7
Дискретная случайная величина Х имеет закон распределения вероятностей: (x=5;7 p=0,3;0,7): 6,4
появление валета и дамы при однократном взятии одной карты из колоды;
В урне имеется 5 белых и 7 черных шаров. Из урны вынимают одновременно два шара. Вероятность того, что оба шара окажутся белыми, равна: 5/33
Игральный кубик подбрасывают один раз. Событие А – “выпало число очков, большее двух”; событие В – “выпало число очков, меньшее пяти”. Верным является утверждение: события А и В совместны
Игральный кубик подбрасывают один раз. Вероятность того, что на верхней грани выпадет четное число очков, равна: 1/2
Вероятность наступления некоторого события может быть равной: 0,6
Дана плотность вероятности непрерывной случайной величины X: Найдите вероятность того, что в результате испытания X примет значения, принадлежащее интервалу (0,3;1) 0,91
Математическое ожидание M(Y) случайной величины Y = 2X + 4 при M(X) = 3 равно:
Первый студент успешно ответит на данный вариант тестов с вероятностью 0,5, а второй – с вероятностью 0,4. Вероятность того, что оба студента успешно пройдут тестирование, равна: 0,2
Математическое ожидание разности двух случайных величин равна: разности математических ожиданий этих случайных величин
Если события А и В несовместны, то справедлива формула: P(A+B)=P(A)+P(B)
Непрерывная случайная величина Х задана интегральной функцией распределения вероятностей Тогда значение С равно... C=1/2, a=1
Постоянный множитель из под знака дисперсии... Можно внести в квадрат и вынести
Дисперсияслучайнойвеличиныхарактеризует... рассеивание случайной величины относительно среднего значения
Формула выражает Неравенство Маркова
В партии из 10 изделий 8 изделий являются бракованными. Вероятность того, что при выборочном контроле из 5выбранных изделий бракованными окажутся 3 изделий (С - символ числа сочетаний): 2/9
Формула выражает Неравенство Чебышева
Математическое ожидание случайной величины имеет размерность самойслучайнойвеличины
Формула выражает Теорему Бернулли
Случайная величина равномерно распределена на интервале [-2,2]. Тогда ее плотность вероятности принимает значение, равное 1/4
Дискретная случайная величина X имеет закон распределения: (X=7;14;21;28 P=0,1;0,2Pз=0,4): Вероятность Pз равна: 0,3
Непрерывная случайная величина Х задана дифференциальной функцией распределения вероятностей Тогда значение С равно... 1/3
Первый студент успешно ответит на данный вариант тестов с вероятностью 0,5, а второй – с вероятностью 0,7. Вероятность того, что оба студента успешно пройдут тестирование, равна: 0,35
В урне имеется а белых и b черных шаров. Из урны вынимают (одновременно или последовательно) два шара. Вероятность того, что оба шара окажутся белыми, равна: a*(a-1)/(a+b)*(a+b-1)
Несовместными являются следующие события появление герба и цифры при однократном подбрасывании одной монеты;
Первый стрелок попадает в мишень с вероятностью 0,9, а второй – с вероятностью 0,5. Каждый стрелок делает по одному выстрелу. Вероятность того, что оба стрелка попадут в мишень, равна: 0,45
Количество различных способов выбора (порядок не имеет значения) 3 томов из 8-томного собрания сочинений равно:
Количество комбинаций, которые можно получить путем перестановки букв, входящих в слово “число”, равно:
Если события А и В совместны, то справедлива формула: P(A+B)<=P(A)+P(B)
Число пятизначных чисел, одинаково читающихся слева направо и справа налево равно...
Имеется 10 качественных и 4 бракованных изделий. Извлекается одно изделие. Событие А – “извлечено качественное изделие”, событие B – “извлечено бракованное изделие”. Для этих событий неверным является утверждение: вероятность события А равна вероятности события В;
В партии из N изделий М изделий являются бракованными. Вероятность того, что при выборочном контроле из n выбранных изделий бракованными окажутся m изделий (m верхний правый член числителя (С(N-M))^n-m
Игральный кубик подбрасывают один раз. Событие А – “выпало число очков, большее трех”; событие В – “выпало число очков, меньшее трех”. Верным является утверждение: события А и В несовместны
Вероятность для студента сдать первый экзамен равна 0,6, второй - 0,4. Вероятность сдать либо первый, либо второй, либо оба экзамена равна: 0,76
Игральный кубик подбрасывают один раз. Вероятность того, что на верхней грани выпадет число очков, равное двум или четырем, равна: 1/3
Вероятность наступления некоторого события не может быть равной:
Вероятность изготовления нестандартной детали равна 0,11. Пользуясь формулой Бернулли найти вероятность того, что из пяти наудачу взятых деталей будут четыре стандартных. 0,345
В вопросах к зачету имеются 75% вопросов, на которые студенты знают ответы. Преподаватель выбирает из них два вопроса и задает их студенту. Определить вероятность того, что среди полученных студентом вопросов есть хотя бы один, на который он знает ответ 0,937

Конец работы -

Эта тема принадлежит разделу:

Дана дифференциальная функция случайной величины x: найдите вероятность того, что в результате испытания x примет значения, принадлежащее интервалу 0,5; 1

Как называют гипотезу содержащую только одно предположение простой гипотезой..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Пусть проводится n независимых испытаний, в каждом из которых некоторое событие А может как появиться, так и не появиться. Пусть вероятность появления события А в одном испытании постоянна и равна p (вероятность непоявления события А равна q = 1– p ).

При этих условиях вероятность того, что событие А при проведении n испытаний наступит ровно k раз определяется формулой Бернулли :

Число наступления события А в независимых испытаниях называется наивероятнейшим , если вероятность того, что событие А наступит в этих испытаниях раз, превышает (или не меньше) вероятности остальных исходов испытаний. Число определяется с помощью двойного неравенства:

Если – дробное число, то существует одно наивероятнейшее число .

Если – целое число, то существуют два наивероятнейших числа и .

Если – целое число, то .

Задача. Вероятность того, что изделие не пройдет контроля равна 0,125. Найти вероятность того, что среди 12 изделий не будет ни одного бракованного.

Решение. Обозначим событие А – «изделие не пройдет контроля». Проводится n = 12 независимых испытаний. Необходимо найти вероятность того, что событие А произойдет k = 0 раз (не будет ни одного изделия, не прошедшего контроля). Вероятность появления события А p = 0,125=1/8, непоявления – q = 0,875=7/8. По формуле Бернулли (17.1) получим:

Формула Пуассона

В случае, когда при возрастании n вероятность p появления интересующего события убывает, а - постоянное число (будем полагать, что a £ 10), то вероятность того, что событие А при проведении n испытаний наступит ровно k раз можно вычислить по формуле Пуассона :

Формула Пуассона является хорошим приближением формулы Бернулли в случае, когда вероятность события мала (p ® 0, ), а число испытаний n велико. Формулу Пуассона называют законом редких событий.

Потоком событий называется последовательность событий, которые наступают в случайные моменты времени.

Интенсивностью потока l называется среднее число событий, которое появляется в единицу времени.

Вероятность появления k событий простейшего потока за время t определяется формулой Пуассона:

Задача. С конвейера за сутки сходит 6 бракованных деталей. Конвейер работает в три смены. Определить вероятность того, что за смену не будет ни одной бракованной детали.

Решение. Интенсивность появления брака l = 6/24 = 0,25. Период времени t = 8 (ч.) – смена. Найдем вероятность того, что за смену не будет брака:




Дискретные случайные величины.

Числовые характеристики дискретных случайных величин.

Функция распределения

Случайной величиной называется величина, которая в результате испытания принимает любое наперед неизвестное значение из некоторого числового множества. Значение случайной величины зависит от многих случайных факторов, которые до опыта не могут быть учтены.

Случайная величина называется дискретной , если она принимает значения из некоторого фиксированного конечного или счетного множества. В этом случае значения случайной величины можно пронумеровать.

Законом распределения дискретной случайной величины называется соответствие между ее возможными значениями и их вероятностями. Закон распределения может быть задан аналитически, графически и таблично. Закон распределения в табличной форме имеет вид:

Х х 1 х 2 x n
Р р 1 р 2 p n

В первой строке таблицы содержатся возможные значения случайной величины Х , во второй - вероятности этих значений. При каждом испытании случайная величина Х может принять только одно значение, поэтому события Х = x 1 , Х = x 2 , …, Х = x n образуют полную группу попарно несовместных событий, и, следовательно, .

Многоугольником (полигоном )распределения дискретной случайной величины называется графическое представление закона ее распределения. Для построения многоугольника распределения в прямоугольной декартовой системе координат надо последовательно соединить точки с координатами , где - возможные значения случайной величины Х , - соответствующие вероятности (i = 1, 2, …, n ).

Математическим ожиданием М (Х Х называется сумма произведений всех её возможных значений на их вероятности:

Дисперсией (рассеянием ) D (X ) дискретной случайной величины Х называется математическое ожидание квадрата отклонения случайной величины от её математического ожидания:



Дисперсию удобно вычислять по формуле:

Средним квадратическим отклонением s(Х )дискретной случайной величины Х называется корень квадратный из дисперсии:

Функцией распределения (интегральной функцией ) случайной величины Х называется функция F (x ), определяющая вероятность того, что случайная величина Х в результате испытания примет значение меньшее х :

Свойства функции распределения

1. Значения функции распределения принадлежит отрезку :

2. - неубывающая функция, т.е. , если .

3. Если возможные значения случайной величины принадлежат интервалу (a, b ), то при , при .

4. Вероятность того, что случайная величина Х примет значение, принадлежащее промежутку [a, b ), равна приращению функции распределения на этом промежутке:

Задача. Дискретная случайная величина Х задана законом распределения:

Х
Р 0,2 0,1 0,4 0,3

1. Построить многоугольник распределения.

2. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение.

3. Найти функцию распределения случайной величины Х и построить ее график.

4. Найти вероятность того, что в результате испытания случайная величина Х примет значение из интервала . Числовые характеристики X :

Следовательно, . Решая данную систему, получим две пары значений: . Так как по условию задачи , то окончательно имеем: .

Ответ: .

Пример 2.11. В среднем по 10% договоров страховая компания выплачивает страховые суммы в связи с наступлением страхового случая. Вычислить математическое ожидание и дисперсию числа таких договоров среди наудачу выбранных четырех.

Решение: Математическое ожидание и дисперсию можно найти по формулам:

.

Возможные значения СВ (число договоров (из четырех) с наступлением страхового случая): 0, 1, 2, 3, 4.

Используем формулу Бернулли, чтобы вычислить вероятности различного числа договоров (из четырех), по которым были выплачены страховые суммы:

.

Ряд распределения СВ (число договоров с наступлением страхового случая) имеет вид:

0,6561 0,2916 0,0486 0,0036 0,0001

Ответ: , .

Пример 2.12. Из пяти роз две белые. Составить закон распределения случайной величины, выражающей число белых роз среди двух одновременно взятых.

Решение: В выборке из двух роз может либо не оказаться белой розы, либо может быть одна или две белые розы. Следовательно, случайная величина Х может принимать значения: 0, 1, 2. Вероятности того, что Х примет эти значения, найдем по формуле:

где -- число роз;

-- число белых роз;

число одновременно взятых роз;

-- число белых роз среди взятых.

.

.

.

Тогда закон распределения случайной величины будет такой:

Пример 2.13. Среди 15 собранных агрегатов 6 нуждаются в дополнительной смазке. Составить закон распределения числа агрегатов, нуждающихся в дополнительной смазке, среди пяти наудачу выбранных из общего числа.

Решение: Случайная величина Х – число агрегатов, нуждающихся в дополнительной смазке среди пяти выбранных – может принимать значения: 0, 1, 2, 3, 4, 5 и имеет гипергеометрическое распределение. Вероятности того, что Х примет эти значения, найдем по формуле:

где -- число собранных агрегатов;

-- число агрегатов, нуждающихся в дополнительной смазке;

число выбранных агрегатов;

-- число агрегатов, нуждающихся в дополнительной смазке среди выбранных.

.

.

.

.

.

Тогда закон распределения случайной величины будет такой:

Пример 2.14. Из поступивших в ремонт 10 часов 7 нуждаются в общей чистке механизма. Часы не рассортированы по виду ремонта. Мастер, желая найти часы, нуждающиеся в чистке, рассматривает их поочередно и, найдя такие часы, прекращает дальнейший просмотр. Найти математическое ожидание и дисперсию числа просмотренных часов.

Решение: Случайная величина Х – число агрегатов, нуждающихся в дополнительной смазке среди пяти выбранных – может принимать значения: 1, 2, 3, 4. Вероятности того, что Х примет эти значения, найдем по формуле:

.

.

.

.

Тогда закон распределения случайной величины будет такой:

Теперь вычислим числовые характеристики величины :

Ответ: , .

Пример 2.15. Абонент забыл последнюю цифру нужного ему номера телефона, однако помнит, что она нечетная. Найти математическое ожидание и дисперсию числа сделанных им наборов номера телефона до попадания на нужный номер, если последнюю цифру он набирает наудачу, а набранную цифру в дальнейшем не набирает.

Решение: Случайная величина может принимать значения: . Так как набранную цифру абонент в дальнейшем не набирает, то вероятности этих значений равны .

Составим ряд распределения случайной величины:

0,2

Вычислим математическое ожидание и дисперсию числа попыток набора номера:

Ответ: , .

Пример 2.16. Вероятность отказа за время испытаний на надежность для каждого прибора серии равна p . Определить математическое ожидание числа приборов, давших отказ, если испытанию подверглись N приборов.

Решение: Дискретная случайная величина X - число отказавших приборов в N независимых испытаниях, в каждом из которых вероятность появления отказа равна p, распределена по биномиальному закону. Математическое ожидание биномиального распределения равно произведению числа испытаний на вероятность появления события в одном испытании:

Пример 2.17. Дискретная случайная величина X принимает 3 возможных значения: с вероятностью ; с вероятностью и с вероятностью . Найти и , зная, что M(X ) = 8.

Решение: Используем определения математического ожидания и закона распределения дискретной случайной величины:

Находим: .

Пример 2.18. Отдел технического контроля проверяет изделия на стандартность. Вероятность того, что изделие стандартно, равна 0,9. В каждой партии содержится 5 изделий. Найти математическое ожидание случайной величины X – числа партий, в каждой из которых содержится ровно 4 стандартных изделия, если проверке подлежат 50 партий.

Решение: В данном случае все проводимые опыты независимы, а вероятности того, что в каждой партии содержится ровно 4 стандартных изделия, одинаковы, следовательно, математическое ожидание можно определить по формуле:

,

где - число партий;

Вероятность того, что в партии содержится ровно 4 стандартных изделия.

Вероятность найдем по формуле Бернулли:

Ответ: .

Пример 2.19. Найти дисперсию случайной величины X – числа появлений события A в двух независимых испытаниях, если вероятности появления события в этих испытаниях одинаковы и известно, что M (X ) = 0,9.

Решение: Задачу можно решить двумя способами.

1) Возможные значения СВ X : 0, 1, 2. По формуле Бернулли определим вероятности этих событий:

, , .

Тогда закон распределения X имеет вид:

Из определения математического ожидания определим вероятность :

Найдем дисперсию СВ X :

.

2) Можно использовать формулу:

.

Ответ: .

Пример 2.20. Математическое ожидание и среднее квадратическое отклонение нормально распределенной случайной величины X соответственно равны 20 и 5. Найти вероятность того, что в результате испытания X примет значение, заключенное в интервале (15; 25).

Решение: Вероятность попадания нормальной случайной величины Х на участок от до выражается через функцию Лапласа:

Пример 2.21. Дана функция:

При каком значении параметра C эта функция является плотностью распределения некоторой непрерывной случайной величины X ? Найти математическое ожиданий и дисперсию случайной величины X .

Решение: Для того, чтобы функция была плотностью распределения некоторой случайной величины , она должна быть неотрицательна, и она должна удовлетворять свойству:

.

Следовательно:

Вычислим математическое ожидание по формуле:

.

Вычислим дисперсию по формуле:

T равна p . Необходимо найти математическое ожидание и дисперсию этой случайной величины.

Решение: Закон распределения дискретной случайной величины X - числа появлений события в независимых испытаниях, в каждом из которых вероятность появления события равна , называют биномиальным. Математическое ожидание биномиального распределения равно произведению числа испытаний на вероятность появления события А одном испытании:

.

Пример 2.25. Производится три независимых выстрела по мишени. Вероятность попадания при каждом выстреле равна 0.25. Определить среднее квадратическое отклонение числа попаданий при трех выстрелах.

Решение: Так как производится три независимых испытания, и вероятность появления события А (попадания) в каждом испытании одинакова, то будем считать, что дискретная случайная величина X - число попаданий в мишень – распределена по биномиальному закону.

Дисперсия биномиального распределения равна произведению числа испытаний на вероятности появления и непоявления события в одном испытании:

Пример 2.26. Среднее число клиентов, посещающих страховую компанию за 10 мин., равно трем. Найти вероятность того, что в ближайшие 5 минут придет хотя бы один клиент.

Среднее число клиентов, пришедших за 5 минут: . .

Пример 2.29. Время ожидания заявки в очереди на процессор подчиняется показательному закону распределения со средним значением 20 секунд. Найти вероятность того, что очередная (произвольная) заявка будет ожидать процессор более 35 секунд.

Решение: В этом примере математическое ожидание , а интенсивность отказов равна .

Тогда искомая вероятность:

Пример 2.30. Группа студентов в количестве 15 человек проводит собрание в зале, в котором 20 рядов по 10 мест в каждом. Каждый студент занимает место в зале случайным образом. Какова вероятность того, что не более трех человек будут находиться на седьмом месте ряда?

Решение:

Пример 2.31.

Тогда согласно классическому определению вероятности:

где -- число деталей в партии;

-- число нестандартных деталей в партии;

число отобранных деталей;

-- число нестандартных деталей среди отобранных.

Тогда закон распределения случайной величины будет такой.

Поэтому ваше ближайшее времяпровождение будет крайне полезным. Кроме того, я расскажу, в чём заблуждается подавляющее большинство участников лотерей и азартных игр. …Нееет, вера или слабая надежда «сорвать куш» тут совершенно не при чём;-) Не успев и глазом моргнуть, погружаемся в тему:

Что такое независимые испытания ? Практически всё понятно уже из самого названия. Пусть производится несколько испытаний. Если вероятность появления некоего события в каждом из них не зависит от исходов остальных испытаний, то… заканчиваем фразу хором =) Молодцы. При этом под словосочетанием «независимые испытания» часто подразумевают повторные независимые испытания – когда они осуществляются друг за другом.

Простейшие примеры:
– монета подбрасывается 10 раз;
– игральная кость подбрасывается 20 раз.

Совершенно ясно, что вероятность выпадения орла либо решки в любом испытании не зависит от результатов других бросков. Аналогичное утверждение, естественно, справедливо и для кубика.

А вот последовательное извлечение карт из колоды не является серией независимых испытаний – как вы помните, это цепочка зависимых событий . Однако если карту каждый раз возвращать обратно, то ситуация станет «такой, какой надо».

Спешу обрадовать – у нас в гостях очередной Терминатор, который абсолютно равнодушен к своим удачам/неудачам, и поэтому его стрельба представляет собой образец стабильности =):

Задача 1

Стрелок совершает 4 выстрела по мишени. Вероятность попадания при каждом выстреле постоянна и равна . Найти вероятность того, что:

а) стрелок попадёт только один раз;
б) стрелок попадёт 2 раза.

Решение : условие сформулировано в общем виде и вероятность попадания в мишень при каждом выстреле считается известной . Она равна (если совсем тяжко, присвойте параметру какое-нибудь конкретное значение, например, ) .

Коль скоро, мы знаем , то легко найти вероятность промаха в каждом выстреле:
, то есть, «ку» – это тоже известная нам величина .

а) Рассмотрим событие «Стрелок попадёт только один раз» и обозначим его вероятность через (индексы понимаются как «одно попадание из четырёх») . Данное событие состоит в 4 несовместных исходах: стрелок попадёт в 1-й или во 2-й или в 3-й или в 4-й попытке.

Найти вероятность того, что при броске 10 монет орёл выпадет на 3 монетах.

Здесь испытания не повторяются, а скорее, производятся одновременно, но, тем не менее, работает та же самая формула: .

Решение будет отличаться смыслом и некоторыми комментариями, в частности:
способами можно выбрать 3 монеты, на которых выпадет орёл.
– вероятность выпадения орла на каждой из 10 монет
и т.д.

Однако на практике подобные задачи встречаются не столь часто, и, видимо, по этой причине формула Бернулли чуть ли не стереотипно ассоциируется только с повторными испытаниями. Хотя, как только что было показано, повторяемость вовсе не обязательна.

Следующая задача для самостоятельного решения:

Задача 3

Игральную кость бросают 6 раз. Найти вероятность того, что 5 очков:

а) не выпадут (выпадут 0 раз) ;
б) выпадут 2 раза;
в) выпадут 5 раз.

Результаты округлить до 4 знаков после запятой.

Краткое решение и ответ в конце урока.

Очевидно, что в рассматриваемых примерах некоторые события более вероятны, а некоторые – менее вероятны. Так, например, при 6 бросках кубика даже безо всяких расчётов интуитивно понятно, что вероятности событий пунктов «а» и «бэ» значительно больше вероятности того, что «пятёрка» выпадет 5 раз. А теперь поставим задачу найти

НАИВЕРОЯТНЕЙШЕЕ число появлений события в независимых испытаниях

Опять же на уровне интуиции в Задаче №3 можно сделать вывод о том, что наивероятнейшее количество появлений «пятёрки» равно единице – ведь всего граней шесть, и при 6 бросках кубика каждая из них должна выпасть в среднем по одному разу. Желающие могут вычислить вероятность и посмотреть, будет ли она больше «конкурирующих» значений и .

Сформулируем строгий критерий : для отыскания наивероятнейшего числа появлений случайного события в независимых испытаниях (с вероятностью в каждом испытании) руководствуются следующим двойным неравенством:

1) если значение – дробное, то существует единственное наивероятнейшее число ;
в частности, если – целое, то оно и есть наивероятнейшее число: ;

2) если же – целое, то существуют два наивероятнейших числа: и .

Наивероятнейшее число появлений «пятёрки» при 6 бросках кубика подпадает под частный случай первого пункта:

В целях закрепления материала решим пару задач:

Задача 4

Вероятность того, что при броске мяча баскетболист попадёт в корзину, равна 0,3. Найти наивероятнейшее число попаданий при 8 бросках и соответствующую вероятность.

А это уже если и не Терминатор, то, как минимум, хладнокровный спортсмен =)

Решение : для оценки наивероятнейшего числа попаданий используем двойное неравенство . В данном случае:

– всего бросков;
– вероятность попадания в корзину при каждом броске;
– вероятность промаха при каждом броске.

Таким образом, наивероятнейшее количество попаданий при 8 бросках находится в следующих пределах:

Поскольку левая граница – дробное число (пункт №1) , то существует единственное наивероятнейшее значение, и, очевидно, что оно равно .

Используя формулу Бернулли , вычислим вероятность того, что при 8 бросках будет ровно 2 попадания:

Ответ : – наивероятнейшее количество попаданий при 8 бросках,
– соответствующая вероятность.

Аналогичное задание для самостоятельного решения:

Задача 5

Монета подбрасывается 9 раз. Найти вероятность наивероятнейшего числа появлений орла

Примерный образец решения и ответ в конце урока.

После увлекательного отступления рассмотрим ещё несколько задач, а затем я поделюсь секретом правильной игры в азартные игры и лотереи.

Задача 6

Среди изделий, произведенных на станке-автомате, в среднем бывает 60% изделий первого сорта. Какова вероятность того, что среди 6 наудачу отобранных изделий будет:

а) от 2 до 4 изделий первого сорта;
б) не менее 5 изделий первого сорта;
в) хотя бы одно изделие более низкого сорта.

Вероятность производства первосортного изделия не зависит от качества других выпущенных изделий, поэтому здесь идёт речь о независимых испытаниях. Старайтесь не пренебрегать анализом условия, а то может статься – события-то зависимые или задача вообще о другом.

Решение : вероятность зашифрована под проценты, которые, напоминаю, нужно разделить на сто: – вероятность того, что выбранное изделие будет 1-го сорта.
Тогда: – вероятность того, что оно не будет первосортным.

а) Событие «Среди 6 наудачу отобранных изделий будет от 2 до 4 изделий первого сорта» состоит в трёх несовместных исходах:

среди изделий будет 2 первосортных или 3 первосортных или 4 первосортных.

С исходами удобнее разделаться по отдельности. Трижды используем формулу Бернулли :

– вероятность того, что в течение дня безотказно будут работать, как минимум, 5 компьютеров из шести.

Данное значение нас тоже не устроит, так как оно меньше требуемой надёжности работы вычислительного центра:

Таким образом, шести компьютеров тоже не достаточно. Добавляем ещё один:

3) Пусть в вычислительном центре компьютеров. Тогда безотказно должны работать 5, 6 или 7 компьютеров. Используя формулу Бернулли и теорему сложения вероятностей несовместных событий , найдём вероятность того, что в течение дня безотказно будут работать, как минимум, 5 компьютеров из семи:

Есть! Требуемый уровень надёжности достигнут.

Можно, конечно, поставить и бОльшее количество компьютеров, но зачем переплачивать? =)

Ответ : чтобы обеспечить нормальную работу вычислительного центра в течение дня с вероятностью, не меньшей , нужно установить не менее семи компьютеров.

Формула Бернулли очень удобна, но с другой стороны, обладает и рядом недостатков. Так, например, при достаточно больших значениях «эн» и «эм» её применение затруднено ввиду огромных значений факториалов. В этом случае используют теоремы Лапласа , которые мы рассмотрим на следующем уроке. Другая распространённая на практике ситуация – когда вероятность некоторого события в отдельно взятом испытании достаточно мала, а количество испытаний велико. Вопрос разрешается с помощью формулы Пуассона .

И, наконец, обещанный секрет:

…Так всё-таки – как правильно играть в азартные игры и лотереи?

Наверное, многие ожидали услышать от меня что-нибудь вроде: «Лучше вообще не играть», «Открыть собственное казино», «Организовать лотерею» и т.п.

Ну почему же не играть? Игра – это одно из развлечений, а за развлечения, как известно, нужно… совершенно верно! Поэтому средства, на которые вы играете, следует считать платой за развлечение, но ни в коем случае трагической потерей.

Тем не менее, каждый участник азартной игры хочет выиграть. И выиграть хорошую сумму. Какой тактики (о стратегии речи не идет вообще) выгоднее всего придерживаться в игре с заведомо проигрышным математическим ожиданием , например, в рулетке? Лучше всего сразу поставить все фишки, как вариант, на «красное» либо «чёрное». С вероятностью вы удвоитесь (и быстро, и много!) , и если это произойдёт – обязательно потратьте выигрыш на другие развлечения =)

Не имеет смысла играть по какой-то «системе» (хотя бы потому, что это глупо) и тратить на это часы/дни/недели – в той же рулетке заведение имеет минимальное преимущество, и проигрываться можно ооооочень долго. Если в оффлайновом казино это ещё как-то можно понять (общение, выпивка, девочки и т.д.), то онлайн игра оставит вас с красными глазами и чувством глубокой досады.

Что касается лотерей, то билет лучше покупать опять же ради развлечения и… наобум. Или «по наитию». Правда, лично я почему-то никогда не слышал об экстрасенсах и предсказателях, которые выигрывают в лотереи =) Не иначе, как шифруются.

Естественно, перечисленные советы не относятся к хроническим лудоманам и им как раз таки «Лучше вообще не играть». Ну а тем посетителям, которые мечтают разбогатеть на гэмблинге, настоятельно рекомендую прочитать либо ещё раз перечитать вводную статью по
По теореме сложения вероятностей несовместных событий:

– вероятность того, что в серии из 8 выстрелов будет ни одного или 1 попадание.
Найдём вероятность противоположного события:
– вероятность того, что цель будет поражена хотя бы два раза.
Ответ :

В продолжение темы:
Дома из бруса

Филипок, рассказ Льва Толстого - одно из произведений школьной программы, его так или иначе должен прочитать каждый ребенок, учащийся в 1,2, максимум 3-м классе. На этой...

Новые статьи
/
Популярные