Обратный пьезоэлектрический эффект. Что такое пьезоэлектрический эффект

Пьезоэлектрический эффект (сокращенно пьезоэффект) наблюдается в анизотропных диэлектриках, преимущественно в кристаллах некоторых веществ, обладающих определенной, достаточно низкой симметрией. Пьезоэффектом могут обладать кристаллы, не имеющие центра симметрии, а имеющие так называемые полярные направления (оси). Пьезоэффектом могут обладать также некоторые поликристаллические диэлектрики с упорядоченной структурой (текстурой), например керамические материалы и полимеры. Диэлектрики, обладающие пьезоэффектом, называют пьезоэлектриками .

Внешние механические силы, воздействуя в определенных направлениях на пьезоэлектрический кристалл, вызывают в нем не только механические напряжения и деформации (как во всяком твердом теле), но и электрическую поляризацию и, следовательно, появление на его поверхностях связанных электрических зарядов разных знаков. При изменении направления механических сил на противоположное становятся противоположными направление поляризации и знаки зарядов. Это явление называют прямым пьезоэффектом . Пьезоэффект обратим. При воздействии на пьезоэлектрик, например кристалл, электрического поля соответствующего направления в нем возникают механические напряжения и деформации. При изменении направления электрического поля на противоположное соответственно изменяются на противоположное направления напряжений и деформаций. Это явление получило название обратного пьезоэффекта .

Схематичные изображения прямого (а, б) и обратного (в, г) пьезоэффектов. Стрелками Р и Е изображены внешние воздействия - механическая сила и напряженность электрического поля. Штриховыми линиями показаны контуры пьезоэлектрика до внешнего воздействия, сплошными линиями - контуры деформации пьезоэлектрика (для наглядности во много раз увеличены); Р - вектор поляризации.

В некоторых источниках для обратного пьезоэффекта неуместно используют термин электрострикция , относящийся к сходному, но другому физическому явлению, характерному для всех диэлектриков, деформации их под действием электрического поля. Электрострикция - четный эффект, означающий, что деформация не зависит от направления электрического поля, а ее величина пропорциональна квадрату напряженности электрического поля. Порядок деформаций при электрострикции намного меньше, чем при пьезоэффекте (примерно на два порядка). Электрострикция всегда возникает и при пьезоэффекте, но вследствие малости в расчет не принимается. Электрострикция - эффект необратимый.

Прямой и обратный пьезоэффект линейны и описываются линейными зависимостями, связывающими электрическую поляризацию Р с механическим напряжением t: P = dt

Данную зависимость называют уравнением прямого пьезоэффекта. Коэффициент пропорциональности d называется пьезоэлектрическим модулем (пьезомодулем), и он служит мерой пьезоэффекта. Обратный пьезоэффект описывается зависимостью: r = dE
где r - деформация; Е - напряженность электрического поля. Пьезомодуль d для прямого и обратного эффектов имеет одно и то же значение.

Приведенные выражения даны в элементарной форме только для уяснения качественной стороны пьезоэлектрических явлений. В действительности пьезоэлектрические явления в кристаллах более сложны, что обусловлено анизотропией их упругих и электрических свойств. Пьезоэффект зависит не только от величины механического или электрического воздействия, но и их характера и направления сил относительно кристаллофических осей кристалла. Пьезоэффект может возникать в результате действия как нормальных, так и касательных напряжений. Существуют направления, для которых пьезоэффект равен нулю. Пьезоэффект описывается несколькими пьезомодулями, число которых зависит от симметрии кристалла. Направления поляризации может совпадать с направлением механического напряжения или составлять с ним некоторый угол. При совпадении направлений поляризации и механического напряжения пьезоэффект называют продольным , а при их взаимно перпендикулярном расположении - поперечным . За направление касательных напряжений принимают нормаль к плоскости, в которой действуют напряжения.


Схематичные изображения, поясняющие продольный (а) и поперечный (б) пьезоэффекты

Деформации пьезоэлектрика, возникающие вследствие пьезоэффекта, весьма незначительны по абсолютной величине. Например, кварцевая пластина толщиной 1 мм под действием напряжения 100 В изменяет свою толщину всего на 2,3 х 10 -7 мм. Незначительность величин деформаций пьезоэлектриков объясняется их очень высокой жесткостью.


Магнитострикционный эффект
Ультразвуковые генераторы
Ультразвуковое резание
Снижение механических усилий при обработке режущим инструментом
Ультразвуковая очистка
Ультразвуковая сварка
Ультразвуковая пайка лужение
Ультразвуковой контроль
Ультразвуковой экспресс анализ
Ускорение производственных процессов
Ультразвуковая пропитка
Ультразвук в металлургии
Ультразвук в горном деле
Ультразвук в электронике
Ультразвук в сельском хозяйстве
Ультразвук в пищевой промышленности
Ультразвук в биологии
Ультразвуковая диагностика заболеваний
Ультразвуковое лечение заболеваний
На суше и на море

В 1880 году французские ученые братья Жак и Пьер Кюри открыли пьезоэлектрический эффект. Сущность его заключается в том, что если деформировать пластинку кварца, то на ее гранях появляются противоположные по знаку электрические заряды. Следовательно, пьезоэлектричество - это электричество, возникающее в результате механического воздействия на вещество ("пьезо" по-гречески означает "давить").
Впервые пьезоэлектрические свойства были обнаружены у горного хрусталя - одной из разновидностей кварца. Горный хрусталь представляет собой прозрачные, бесцветные, похожие на лед кристаллы. Советский минералог А. Е. Ферсман в книге "Занимательная минералогия" писал: "Возьмите в руку обломок горного хрусталя и такой же кусочек стекла - оба похожи и по своему цвету, и по прозрачности. Если их сломать, у них будут одинаково острые, режущие края и форма излома. Но будет и различие: горный хрусталь долгое время останется холодным в вашей руке, стекло очень скоро сделается теплым... Знали ли это свойство древние греки или нет - неизвестно, но во всяком случае это они дали нашему камню название "хрусталь" от греческого наименования "лед", так как действительно горный хрусталь очень похож на лед..."
В природе встречается почти двести разновидностей кварца. Это и золотисто-желтый цитрин, кроваво-красный сердолик, красновато-коричневый с золотым отливом авантюрин, фиолетовый аметист и многие другие. Почти десятую часть земной коры составляют различие виды кварца. Даже обыкновенный песок состоит г лавным образом из зерен кварца.
Кварц широко применяется в науке и технике. Он роспускает ультрафиолетовые лучи, тверд и тугоплавок. посуду из кварцевого стекла можно раскалить докрасна сразу погрузить в ледяную воду. Он устойчив почти ко сем кислотам и плохо проводит электрический ток. Но самым замечательным его свойством считается пьезоэлектричество. Если пластину, определенным образом урезанную из кристалла кварца, сжимать и разжимать, о на ее гранях будут возникать электрические заряды противоположными знаками. Чем сильнее сжатие, тем больше заряд. Возникновение электрических зарядов на гранях кварцевой пластинки при ее деформации получило название прямого пьезоэлектрического эффекта.
Если же к такой кварцевой пластинке подвести электрический заряд, она изменит свои размеры. Чем больше заряд, тем сильнее деформируется пластинка. При действии на пластинку переменного электрического поля она сжимается или разжимается в такт изменению знаков приложенного напряжения. Если последнее изменяется с ультразвуковой частотой, то и пластинка колеблется также с ультразвуковой частотой, на чем и основав но применение кварца для получения ультразвуковых волн. Изменение размеров кварцевой пластинки под действием электрических зарядов называется обратным пьезоэлектрическим эффектом.
Прямой пьезоэлектрический эффект используют в приемниках ультразвуковых колебаний, где последние преобразуются в переменный ток. Но если к такому приемнику приложить переменное напряжение, в полной мере обнаруживается и обратный пьезоэффект. В этом случае переменный ток преобразуется в ультразвуковые колебания и приемник работает как ультразвуковой излучатель. Следовательно, пьезоэлектрический приемник и излучатель могут быть представлены в виде одного при-] бора, которым можно поочередно излучать и принимать ультразвуковые колебания. Такой прибор называют ультразвуковым акустическим преобразователем.
Акустические преобразователи с успехом используются в различного рода электроакустических системах, в частности в системах, предназначенных для акустических и гидроакустических измерений и исследований. Пьезоэлектрические приборы широко применяются и при исследовании космического пространства. Ныне их представляют некоторые датчики, передающие данные о состоянии космонавта, об условиях внутри космического корабля, предупреждающие о метеоритной опасности и т. п.
Пьезоэлектрические приборы помогают "ощупать" детали самолетов, выявить ошибки в их расчетах и предотвратить опасные последствия этих ошибок; "заглянуть" в ствол стреляющего орудия, чтобы измерить давление или получить другие данные. Пьезоэлектричество используется в радиотехнике и телевидении. Пьезоэлектрические приборы помогают находить косяки рыб, исследовать земные недра, искать полезные ископаемые ставить диагнозы и лечить людей, анализировать и ускорять химические процессы и т. д.
Одним из основных материалов, применяемых для изготовления ультразвуковых преобразователей, долгое время считался кварц. Но излучатель, сделанный из маленькой кварцевой пластинки, имеет небольшую мощность. Чтобы повысить ее, увеличивают площадь излучающей поверхности путем составления пластинок кварца в виде своеобразной мозаики.
В природе кристаллы кварца встречаются в основном сравнительно небольших размеров, хотя и бывают исключения. В Восточных Альпах геологи в одном гнезде нашли шесть кристаллов горного хрусталя общей массой свыше полутора тонн. Еще более уникальную находку обнаружили уральские геологи, которые открыли месторождение хрусталя с целым семейством кристаллов-великанов. Сначала из породы извлекли кристаллы массой 800 килограммов. Последующий упорный поиск дал совершенно ошеломляющие результаты - было найдено созвездие из двадцати прозрачных чистых кристаллов. Их общая масса превысила 9 тонн. Однако такие находки не могут удовлетворить все возрастающие потребности науки и техники в кристаллах кварца. Поэтому их пытаются выращивать искусственно в лабораториях, но, к сожалению, они растут медленно и производство их дорогостоящее.
В поисках других пьезоэлектрических материалов ученые обратили внимание на сегнетову соль. Впервые ее получил из солей винной кислоты французский аптекарь Сегнет. Сегнетова соль легко обрабатывается, кристалл сегнетовой соли можно разрезать обыкновенной ниткой, смоченной водой. По сравнению с другими пьезокристаллами, в том числе и по сравнению с кварцем, кристалл сегнетовой соли обладает значительно большим пьезоэлектрическим эффектом, самое ничтожное механическое воздействие на пластинку приводит к появлению электрических зарядов. Однако у сегнетовой соли есть и серьезные недостатки, которые ограничивают ее практическое применение. Это в первую очередь низкая температура плавления - около 60 градусов, при которой кристалл сегнетовой соли теряет пьезоэлектрические свойства, и они уже больше не восстанавливаются. Сегнетова соль Растворяется в воде и, следовательно, боится влаги. Кроме того, она непрочна и не выдерживает больших механических нагрузок.
Изыскания новых пьезоэлектрических материалов особенно настойчиво проводились во время второй мировой войны. Они были вызваны "кварцевым голодом", возникшим вследствие широкого использования пьезокварца в гидроакустических приборах и в военной радио электронике. Так, для изготовления пьезоэлектрических преобразователей в то время применялись кристаллы дигидрофосфата аммония. Этот материал стабилен по частоте, позволяет работать с большими мощностями и в широком диапазоне частот. Долгое время применялись и другие пьезоэлектрические материалы, такие, как фосфат аммония, сульфат лития и дигидрофосфат калия. В гидроакустических преобразователях их использовали в виде мозаичных пакетов. Однако всем этим пьезокристаллам присущ общий недостаток - малая механическая прочность. Поэтому ученые настойчиво искали заменитель, который был бы близок к ним по пьезоэлектрическим свойствам и не имел бы вышеуказанног недостатка. И такой заменитель был найден советскими учеными, работавшими под руководством члена-корреспондента Академии наук СССР Б. М. Вула. Это был титанат бария, который не является кристаллом, как кварц и сегнетова соль, и сам по себе не обладает пьезоэлектрическими свойствами.
Титанат бария получают искусственным путем, так как в недрах земли он встречается очень редко. Для этого смесь двух минеральных веществ - углекислого бария и двуокиси титаната - обжигают при очень высокой температуре. Получается желтовато-белая масса, которая по своему виду и механическим свойствам напоминает обыкновенную глину. Этой массе, как и глине, можно придать любую форму, но она будет механически прочной и не растворимой в воде. А для того чтобы титанату бария придать пьезоэлектрические свойства, обожженную массу помещают в сильное электрическое поле, затем охлаждают. В результате происходит поляриза ция кристалликов титаната бария, их диполи (совокупность двух разноименных, но равных по абсолютной величине электрических зарядов, находящихся на некотором расстоянии друг от друга) занимают одинаково положение, а после охлаждения фиксируются, как бы "замораживаются" в этом состоянии. У полученного материала пьезоэлектрический эффект в 50 раз больше, чем у кварца, а стоимость его невысокая, так как для его изготовления имеется очень большое количество сырья. К недостаткам титаната бария относятся большие механические и диэлектрические потери, что приводит к его перегреву, а при температуре более 90 градусов значительно снижается пьезоэлектрический эффект.
Керамику из титаната бария можно резать, шлифовать, полировать, придавая преобразователю необходимые форму и размеры (плоская пластина, цилиндр, полусфера, часть сферы и т. д.). У преобразователей из титаната бария более эффективно превращение электрической энергии в механическую, большая стойкость к электрическому пробою, они могут работать при малых напряжениях. Кроме того, ультразвуковые преобразователи из титаната бария способны работать в импульсном режиме.
Для изготовления пьезоэлектрических преобразователей используют и другую пьезокерамику: смесь циркония с титанатом свинца (ЦТС), у этой пьезокерамики пьезоэффект вдвое больше, чем у титаната бария. Пьезокерамика ЦТС не растворима в воде, и ее также можно обрабатывать механическим способом.
Одновременно продолжались поиски кристаллов, обладающих пьезоэлектрическими свойствами и удовлетворяющих необходимым техническим требованиям. Так в поле зрения ученых попал сернистый кадмий. Помимо того что он обладает исключительной способностью усиливать ультразвуковые колебания, на его основе можно изготовить ультразвуковой преобразователь для очень высоких частот, совершенно не доступных кварцу и ти-танату бария. Исследователи предполагают, что кристалл сернистого кадмия окажется рекордсменом по количеству возможных применений. Он не только может служить усилителем и преобразователем ультразвука, но и может быть использован наряду с германием и кремнием как обычный полупроводник. Кроме того, сернистый кадмий - отличное фотосопротивление.
Несколько упрощая, можно сказать, что пьезоэлектрический преобразователь представляет собой один или несколько соединенных определенным образом отдельных пьезоэлементов с плоской или сферической поверхностью, приклеенных на общую металлическую пластину. Для получения большой интенсивности излучения применяют фокусирующие пьезоэлектрические преобразователи, или концентраторы, которые могут иметь самые различные формы (полусферы, части полых сфер, полые цилиндры, части полых цилиндров). Такие преобразователи используют для получения мощных ультразвуковых колебаний на высоких частотах. При этом интенсивность излучения в центре фокального пятна у сферических преобразователей в 100-150 раз превышает среднюю интенсивность на излучающей поверхности преобразователя.

"Звук, ультразвук, инфразвук"

2. Обратный пьезоэлектрический эффект.

Наряду с пьезоэлектрическим эффектом существует и обратное ему явление: в пьезоэлектрических кристаллах возникновение поляризации сопровождается механическими деформациями. Поэтому, если на металлические обкладки, укрепленные на кристалле, подать электрическое напряжение, то кристалл под действием поля поляризуется и деформируется.

Легко видеть, что необходимость существования обратного пьезоэффекта следует из закона сохранения энергии и факта существования прямого эффекта. Рассмотрим пьезоэлектрическую пластинку (рис. 5) и предположим, что мы сжимаем ее внешними силами F. Если бы пьезоэффекта не было, то работа внешних сил равнялась бы потенциальной энергии упруго деформированной пластинки. При наличии пьезоэффекта на пластинке появляются заряды и возникает электрическое поле, которое заключает в себе дополнительную энергию. По закону сохранения энергии отсюда следует, что при сжатии пьезоэлектрической пластинки совершается большая работа, а значит, в ней возникают дополнительные силы F1, противодействующие сжатию. Это и есть силы обратного пьезоэффекта. Из приведенных рассуждений вытекает связь между знаками обоих эффектов. Если в обоих случаях знаки зарядов на гранях одинаковы, то знаки деформаций различны. Если при сжатии пластинки на гранях появляются заряды, указанные на рис. 5, то при создании такой же поляризации внешним полем пластинка будет растягиваться.

Рис.5. Связь прямого и обратного пьезоэлектрических эффектов.

Обратный пьезоэлектрический эффект имеет внешнее сходство с электрострикцией. Однако оба эти явления различны. Пьезоэффект зависит от направления поля и при изменении направления последнего на противоположное изменяет знак. Электрострикция же не зависит от направления поля. Пьезоэффект наблюдается только в некоторых кристаллах, не обладающих центром симметрии. Электрострикция имеет место во всех диэлектриках как твердых, так и жидких.

Если пластинка закреплена и деформироваться не может, то при создании электрического поля в ней появится дополнительное механическое напряжение Его величина s пропорциональна напряженности электрического поля внутри кристалла:

где b - тот же пьезоэлектрический модуль, что и в случае прямого пьезоэффекта. Минус в этой формуле отражает указанное выше соотношение знаков прямого и обратного пьезоэффектов.

Полное механическое напряжение внутри кристалла складывается из напряжения, вызванного деформацией, и напряжения, возникшего под влиянием электрического поля. Оно равно:

Здесь С есть модуль упругости при деформации одностороннего растяжения (модуль Юнга) при постоянном электрическом поле. Формулы (51.2) и (52.2) являются основными соотношениями в теории пьезоэлектричества.

При написании формул мы выбирали u и Е в качестве независимых переменных и считали D и s их функциями. Это, конечно, необязательно, и мы могли бы считать независимыми переменными другую пару величин, одна из которых - механическая, а другая - электрическая. Тогда мы получили бы тоже два линейных соотношения между u, s, Е и D, но с другими коэффициентами. В зависимости от типа рассматриваемых задач удобны различные формы записи основных пьезоэлектрических соотношений.

Так как все пьезоэлектрические кристаллы анизотропны, то постоянные e, С и b зависят от ориентации граней пластинки относительно осей кристалла. Кроме того, они зависят от того, закреплены боковые грани пластинки или свободны (зависят от граничных условий при деформации). Чтобы дать представление о порядке величины этих постоянных мы приведем их значения для кварца в случае, когда пластинка вырезана перпендикулярно оси Х и ее боковые грани свободны:

e=4, 5; С=7, 8 1010 Н/м2; b=0, 18 Кл/м2.

Рассмотрим теперь пример применения основных соотношений (4) и (5) Положим, что кварцевая пластинка, вырезанная, как указано выше, растягивается вдоль оси X, причем обкладки, касающиеся граней, разомкнуты. Так как заряд обкладок до деформации был равен нулю, а кварц является диэлектриком, то и после деформации обкладки будут незаряженными. Согласно определению электрического смещения это значит, что D=0. Тогда из соотношения (4) следует, что при деформации внутри пластинки появится электрическое поле c напряженностью:

Подставляя это выражение в формулу (5), находим для механического напряжения в пластинке:

s=Cu-b(-(b/e0e)u)=C(1+(b2/e0eC))u (7)

Напряжение, как и в отсутствие пьезоэлектрического эффекта, пропорционально деформации. Однако упругие свойства пластинки теперь характеризуются эффективным модулем упругости

С" == С (1 + b2/e0eС). (8)

который больше С. Увеличение упругой жесткости вызвано появлением добавочного напряжения при обратном пьезоэффекте, препятствующего деформации. Влияние пьезоэлектрических свойств кристалла на его механические свойства характеризуется величиной: К2=b2/e0eC (9)

Квадратный корень из этой величины (К) называется константой электромеханической связи Пользуясь приведенными выше значениями e, С и b, находим, что для кварца К2~0.01 Для всех других известных пьезоэлектрических кристаллов К2 оказывает также малым по сравнению с единицей и не превышает 0, 1.

Оценим теперь величину пьезоэлектрического поля. Положим, что к граням кварцевой пластинки, перпендикулярным к оси X, приложено механическое напряжение 1 1055 Н/м2. Тогда, согласно (7), деформация будет равна u=1, 3 10-6. Подставляя это значение в формулу (6), получаем |E|==5900 В/м=59 В/см. При толщине пластинки, скажем, d==0, 5 см напряжение между обкладками будет равно U=Еd~30 В. Мы видим, что пьезоэлектрические поля и напряжения могут быть весьма значительными. Применяя вместо кварца более сильные пьезоэлектрики и используя должным образом выбранные типы деформации, можно получать пьезоэлектрические напряжения, измеряемые многими тысячами вольт.

Пьезоэлектрический эффект (прямой и обратный) широко применяется для устройства различных электромеханических преобразователей. Для этого иногда используют составные пьезоэлементы, предназначенные для осуществления деформаций разного типа.

На рис.6 показан двойной пьезоэлемент (составленный из двух пластинок), работающий на сжатие. Пластинки вырезаны из кристалла таким образом, что они одновременно либо сжимаются, либо растягиваются. Если, наоборот, сжимать или растягивать такой пьезоэлемент внешними силами, то между его обкладками появляется напряжение. Соединение пластинок в этом пьезоэлементе соответствует параллельному соединению конденсаторов.

Рис.6. Двойной пьезоэлемент, работающий на сжатие.


А также для метрологических целей. 3. Основные критерии оценки бесконтактных вибропреобразователей Для сравнения бесконтактных методов измерения параметров вибрации и основанных на них виброизмерительных преобразователей целесообразно пользоваться, помимо перечисленных параметров, следующими критериями оценки: характер физических полей или излучений, взаимодействующих в процессе измерений; ...

Т.е. для защиты источника от утечки информации, требуется нарушение энергетических и временных условий существования канала утечки путем использования различных по физическим принципам средств защиты. Технические характеристики акустопреобразовательного канала Акустоэлектрический преобразователь-устройство, преобразующее электромагнитную энергию в энергию упругих волн в среде и обратно. В...

Сырьевой смеси и снижает устойчивость их кристаллических решеток и, следовательно, ускоряет процесс образования материала. Исследование влияния добавок никеля и меди на плотность пьезокерамических заготовок представлены на рис. 2. Результаты измерения плотности показывают, что у легированной керамики плотность выше при всех температурах обжига. Так у керамики с добавкой меди плотность уже при...

Пьезоэлектрический эффект (пьезоэффект) состоит в том, что при механических деформации некоторых кристаллов в определённых направлениях на их гранях появляются электрические заряды противоположных знаков. Пьезоэффект наблюдается в кварце, турмалине, сегнетовой соли, титанате бария, цинковой обманке и других веществах. Пьезоэлектрический эффект в кварце происходит вдоль электрических осей X 1 , X 2 , X 3 кристалла, перпендикулярных к его оптической оси Z. Обращение направления деформации кристалла изменяет знаки зарядов на поверхностях на противоположные. Обратный пьезоэлектрический эффект заключается в изменении линейных размеров некоторых кристаллов под действием электрического поля. Изменение направления электрического поля вызывает изменение характера деформаций на противоположный. Этот эффект имеет большое значение для получения ультразвука.

Пьезоэлектрики - это такие кристаллы, в которых под влиянием однородной деформации возникают дипольный момент, а значит, и электрическое поле, пропорциональные деформации. Наличие пьезоэлектрических свойств тесно связано с симметрией кристалла.

Пьезоэлектрики были открыты еще во второй половине XIX века, но нашли свое применение только в годы Первой мировой войны, когда на их основе были разработаны сонары (от англ. so na andr -- звуковая навигация и определение дальности) для обнаружения подводных лодок. Успешная реализация этого проекта привела к новым применениям пьезоэлектриков. Так были созданы головки для патефонов -- первых звукопроигрывающих устройств, пьезоэлектрические зажигалки, кварцевые часы и микрофоны.

Существуют и не совсем обычные применения пьезоэлектриков. Например, в Европе есть несколько ночных клубов, в танцпол которых встроены пьезоэлектрические генераторы, преобразующие танцевальные вибрации в электричество, которого достаточно для питания осветительных ламп, так как каждый танцор генерирует 5-10 Ватт мощности (см. видеоролик Sustainable Dance Club). Подобная технология применяется ив одном из фитнес-залов Гонконга, где часто проходят тренировки по шейпингу, боксу и бодибилдингу. Уже создано несколько так называемых «эко-клубов», обеспечивающих себя электричеством на 60% за счет пьезоэлектриков, вмонтированных в пол и в барную стойку. Еще дальше пошли в Израиле. В январе 2009 года там стартует пробный стометровый участок дороги со встроенными под асфальт пьезокристаллами. Израильские инженеры из фирмы Innowattech планируют получить до 40 киловатт мощности при четырехполосном движении.

Следует отметить, что пьезоэлектрический эффект, первоначально обнаруженный в природных материалах, таких как кварц, турмалин, Сегнетова соль и т. д., довольно слабый. По этой причине были синтезированы поликристаллические сегнетоэлектрические керамические материалы с улучшенными свойствами, такие как титанат бария BaTiO 3 и цирконат-титанат свинца PZT (аббревиатура формулы PbO 3 0 < x < 1), см. рис. 1.

пьезоэлектрик деформация кристалл

Рис. 1. Кристаллическая решетка PZT: (1) до и (2) после установления полярности

В PZT-кристалле отрицательные и положительные электрические заряды разделены, но при этом они распределены в объеме кристалла симметрично, что делает его электрически нейтральным. Чтобы подобная керамика стала пьезоэлектриком, необходимо «отрегулировать» полярность зарядов в кристаллической решетке. Для этого сквозь нагреваемую керамику пропускают сильное электрическое поле (> 2000 В/мм), которое приводит к нарушению симметрии в кристалле.

В пьезокристаллах заряды разных знаков формируют электрический диполь. Несколько близлежащих диполей формируют так называемые домены Вейса (Weiss domains). До установления полярности домены ориентированы произвольным образом. Под действием электрического поля и высокой температуры кристалл расширяется в направлении поля и сжимается по перпендикулярной оси. Это приводит к выстраиванию диполей вдоль приложенного электрического поля.

После выключения поля и остывания пьезокерамика обладает остаточной поляризацией. Если к кристаллу с отрегулированной полярностью приложить электрическое поле, домены Вейса начинают выравниваться вдоль поля, причем степень выравнивания зависит от приложенного электрического напряжения. В результате возникает изменение размеров пьезоэлектрического материала.

При механическом давлении симметрия распределения зарядов нарушается, приводя к разности потенциалов на поверхностях кристалла. Например, кварц объемом 1 см 3 при приложении силы 2 кН может произвести напряжение до 12500 В.

Рисунок 1 - Схематичные изображения прямого (а, б) и обратного (в, г) пьезоэффектов.


Стрелками Р и Е изображены внешние воздействия - механическая сила и напряженность электрического поля. Штриховыми линиями показаны контуры пьезоэлектрика до внешнего воздействия, сплошными линиями - контуры деформации пьезоэлектрика (для наглядности во много раз увеличены); Р - вектор поляризации.

В некоторых источниках для обратного пьезоэффекта неуместно используют термин электрострикция, относящийся к сходному, но другому физическому явлению, характерному для всех диэлектриков, деформации их под действием электрического поля. Электрострикция - четный эффект, означающий, что деформация не зависит от направления электрического поля, а ее величина пропорциональна квадрату напряженности электрического поля. Порядок деформаций при электрострикции намного меньше, чем при пьезоэффекте (примерно на два порядка). Электрострикция всегда возникает и при пьезоэффекте, но вследствие малости в расчет не принимается. Электрострикция - эффект необратимый.

Прямой и обратный пьезоэффект линейны и описываются линейными зависимостями, связывающими электрическую поляризацию Р с механическим напряжением t:P = dt. Данную зависимость называют уравнением прямого пьезоэффекта. Коэффициент пропорциональности d называется пьезоэлектрическим модулем (пьезомодулем), и он служит мерой пьезоэффекта. Обратный пьезоэффект описывается зависимостью: r = dE где r - деформация; Е - напряженность электрического поля. Пьезомодуль d для прямого и обратного эффектов имеет одно и то же значение.

Приведенные выражения даны в элементарной форме только для уяснения качественной стороны пьезоэлектрических явлений. В действительности пьезоэлектрические явления в кристаллах более сложны, что обусловлено анизотропией их упругих и электрических свойств. Пьезоэффект зависит не только от величины механического или электрического воздействия, но и их характера и направления сил относительно кристаллофических осей кристалла. Пьезоэффект может возникать в результате действия как нормальных, так и касательных напряжений. Существуют направления, для которых пьезоэффект равен нулю. Пьезоэффект описывается несколькими пьезомодулями, число которых зависит от симметрии кристалла. Направления поляризации может совпадать с направлением механического напряжения или составлять с ним некоторый угол. При совпадении направлений поляризации и механического напряжения пьезоэффект называют продольным, а при их взаимно перпендикулярном расположении - поперечным. За направление касательных напряжений принимают нормаль к плоскости, в которой действуют напряжения.

Рисунок 2 - Схематичные изображения, поясняющие продольный (а) и поперечный (б) пьезоэффекты


Деформации пьезоэлектрика, возникающие вследствие пьезоэффекта, весьма незначительны по абсолютной величине. Например, кварцевая пластина толщиной 1 мм под действием напряжения 100 В изменяет свою толщину всего на 2,3х10 -7 мм. Незначительность величин деформаций пьезоэлектриков объясняется их очень высокой жесткостью.

В продолжение темы:
Ленточный фундамент

Спагетти с соусом из рыбной консервы — этот недорогой рецепт мы увидели на пачке купленных нами спагетти. Рецепт показался нам очень простым, ну и мы решили попробовать...

Новые статьи
/
Популярные