Металлическое стекло состав. Металлические стекла (аморфные сплавы)

Именно такой материал, для которого энергия образования сдвиговых полос будет много меньше энергии, необходимой для их превращения в трещины, и пытались создать авторы. Перепробовав множество вариантов, они остановились на сплаве палладия, фосфора, кремния и германия, позволявшем получить стеклянные стержни диаметром около 1 мм. При добавлении серебра диаметр удалось увеличить до 6 мм; размер образцов, заметим, ограничивается тем, что исходный расплав требует очень быстрого охлаждения.

«Смешивая пять элементов, мы добиваемся того, что материал при охлаждении «не знает», какую кристаллическую структуру принять, и выбирает аморфную», — поясняет один из участников исследования Роберт Ритчи. Эксперименты показали, что такое металлическое стекло действительно сочетает присущую стёклам твёрдость с характерным для металлов сопротивлением развитию трещин.

Нетрудно предсказать, что на практике новый материал, содержащий чрезвычайно дорогой палладий, будет использоваться редко — возможно, для изготовления зубных или каких-либо других медицинских имплантатов.

«К сожалению, мы пока не определили, почему наш сплав имеет столь привлекательные характеристики, — говорит ещё один участник работ Мариос Деметриу. — Если нам это удастся, можно будет попробовать создать удешевлённый вариант стекла на основе меди, железа или алюминия».

Металлические стекла, или аморфные металлы, это новые технологические сплавы, структура которых не кристаллическая, а скорее, неорганизованная, атомы в которой занимают до некоторой степени случайное расположение. В этом смысле металлические стекла похожи на такие оксидные стекла, как известково-натриевые стекла, используемые для окон и бутылок.

С определенной точки зрения аморфная структура металлических стекол обусловливает два важных свойства. Во-первых, как и другие виды стекол, они претерпевают переход стекла в переохлажденное жидкое состояние при нагревании. В этом состоянии растекаемость стекла может регулироваться по многим параметрам, создавая тем самым большое число возможных форм, придаваемых стеклу. Например, компания Liquidmetal Technologies изготовила короткую клюшку для гольфа.

Во-вторых, аморфная атомная структура означает, что металлическое стекло не имеет дефектов кристаллической решётки, так называемые дислокации, которые влияют на многие прочностные свойства большинства обычных сплавов. Наиболее очевидным следствием этого является большая твердость металлических стекол, чем у их кристаллических аналогов. К тому же металлические стекла менее жесткие, чем кристаллические сплавы. Сочетание высокой твердости и низкой жесткости придают металлическим стеклам высокую упругость - способность аккумулировать энергию упругой деформации и высвобождать ее.

Еще одно следствие аморфной структуры в том, что в отличие от кристаллических сплавов, металлические стекла ослаблены из-за деформации. «Деформационное разуплотнение» вызывает концентрацию деформации в очень узких полосах скольжения, просвечивающей электронной микроскопии.

Металлическое стекло или прозрачный металл?

В Калифорнийском технологическом институте разработан новый метод изготовления чрезвычайно перспективных конструкционных материалов - объемных металлических стекол. Они представляют из себя сплавы нескольких металлов, не имеющие кристаллической структуры. В этом они похожи на обычное стекло - отсюда и название. Металлическое стекло возникает при очень быстром охлаждении расплавов, из-за которого те просто не успевают кристаллизоваться и сохраняют аморфную структуру. Сначала таким способом научились получать тонкие ленты металлических стекол, которые легче заставить быстро терять температуру. Объемные металлические стекла изготовлять куда труднее.

Металлические стекла обладают множеством достоинств. Кристаллические решетки обычных металлов и сплавов всегда содержат те или иные структурные дефекты, которые снижают их механические качества. В металлических стеклах таких дефектов нет и не может быть, поэтому они отличаются особой твердостью. Некоторые металлические стекла к тому же сопротивляются коррозии даже лучше нержавеющей стали. Поэтому специалисты полагают, что эти материалы ожидает блестящее будущее.

До сих пор объемные металлические стекла имели один крупный недостаток - низкую пластичность. Они хорошо выдерживают изгибы и сжатия, но ломаются при растяжении. Теперь Даглас Хоффман и его коллеги изобрели технологию изготовления объемных металлических стекол на основе сплавов титана, циркония, ниобия, меди и бериллия, которая приводит к рождению материалов, не уступающих по прочности лучшим титановым и стальным сплавам.

Разработчики полагают, что сначала они найдут применение в авиакосмической индустрии, а потом, когда удастся снизить их себестоимость, и в других отраслях.

Металлическое стекло как победить хрупкость

Под сканирующим электронным микроскопом хорошо видна ступенчатая структура полосы сдвига.

По краям трещин формируются аналогичные полосы сдвига, что приводит к разрушению вершины трещины и препятствует её дальнейшему росту.

Благодаря своей аморфной структуре металлические стекла могут быть прочными, как сталь, и пластичными, как полимерные материалы, они способны проводить электрический ток и обладают высокой коррозионной стойкостью. Такие материалы могли бы получить широкое распространение при изготовлении медицинских имплантатов и разнообразных электронных устройств, если бы не одно неприятное свойство: хрупкость. Металлические стекла, как правило, являются ломкими и неравномерно сопротивляются усталостным нагрузкам, что ставит под вопрос их надежность. Использование многокомпонентных аморфных металлов решает эту проблему, однако для монолитных металлических стекол она до сих пор актуальна.

В рамках нового исследования. проведенного совместно учеными из Лаборатории Беркли и Калифорнийского технологического института, был найден способ повысить усталостную прочность объемных металлических стекол. Объемное металлическое стекло на основе палладия, подвергнутое усталостным нагрузкам, проявило себя ничуть не хуже, чем лучшие из композитных металлических стекол. Его усталостная прочность сравнима с этим показателем для широко используемых поликристаллических конструкционных металлов и сплавов, таких как сталь, алюминий и титан.

Под нагрузкой на поверхности палладиевого металлического стекла образуется полоса сдвига локальная область значительной деформации, которая принимает ступенчатую форму. При этом по краям трещин, разделяющих ступени, возникают такие же полосы сдвига, что притупляет вершины трещин и препятствует их дальнейшему распространению.

Палладий характеризуется высоким соотношением модулей объемного сжатия и сдвига. что скрадывает присущую стеклообразным материалам хрупкость, поскольку образование многоуровневых полос сдвига, препятствующих дальнейшему росту трещин, оказывается энергетически более выгодным, чем формирование крупных трещин, приводящих к быстрому разрушению образца. Вкупе с высоким пределом выносливости материала эти механизмы значительно повышают усталостную прочность объемного металлического стекла на основе палладия.

Некристаллический металл или сплав, обычно получаемый переохлаждением расплавленного сплава посредством осаждения из газовой фазы или жидкой фазы или внешними методами воздействия.

Источники: www.nanonewsnet.ru, tran.su, www.razgovorium.ru, www.popmech.ru, enc-dic.com

Невская битва 1240 — Невская битва 1240, сражение русских и шведских войск на берегу р. Нева 15 июля 1240. Целью...

Харибда

В древнегреческой мифологии Сцилла и Харибда были морскими чудовищами. Согласно «Одиссее» Гомера, Сцилла и Харибда...

Причины начала Первой мировой войны

В мировой истории существует много различных событий, которые меняли суть самой истории. В каждый исторический период происходило...

Металлические стекла (аморфные сплавы, стекловидные метал­лы, метглассы) - металлические сплавы в стеклообразном состоянии, образующиеся при сверхбыстром охлаждении металлического рас­плава, когда быстрым охлаждением предотвращена кристаллизация (скорость охлаждения < 10 6 К/с).

Металлические стекла - метастабильные системы, которые кристаллизуются при нагревании до температуры ~ 1/2 t пл. Нагрев, когда подвижность атомов возрастает, постепенно приводит аморф­ный сплав через ряд метастабильных состояний в стабильное кри­сталлическое состояние. Многие металлические стекла испытывают структурную релаксацию уже при температуре чуть выше комнатной. Наложение деформирующего напряжения усиливает диффузионную подвижность и связанную с ней структурную перестройку сплавов.

Состав металлических стекол чаще всего выражается форму­лой М 80 Х 20 , где М - переходные (Cr, Mn, Fe, Co, Ni и др.) или благо­родные металлы, а X - поливалентные неметаллы (В, С, N, Si, P, Ge и др.), являющиеся стеклообразующими элементами.

Металлические стекла отличаются от кристаллических сплавов отсутствием таких дефектов структуры, как вакансии, дислокации, границы зерен, и уникальной химической однородностью: отсутству­ет ликвация, весь сплав однофазен.

Особенности строения металлических стекол обусловливают отсутствие характерной для кристаллов анизотропии свойств, высо­кую прочность, коррозионную стойкость и магнитную проницае­мость, малые потери на перемагничивание.

Физико-химические свойства металлических стекол значитель­но отличаются от свойств литых сплавов. Характерными особенно­стями потребительских свойств металлических стекол являются высо­кая прочность в сочетании с большой пластичностью и высокой коррозионной стойко­стью. Некоторые металлические стекла - ферромагнетики с очень низкой коэрцитивной силой и высокой магнитной проницаемостью (например, Fe 80 B 20), а для других характерно очень слабое поглоще­ние звука (сплавы редкоземельных металлов с переходными металла­ми). Наиболее широкое применение металлические стекла нашли бла­годаря магнитным и коррозионным свойствам.

Магнитно-мягкие металлические стекла изготавливают на ос­нове Fe, Co, Ni с добавками 15...20 % аморфообразующих элементов B, С, Si, P. Например, Fe 81 Si 3 , 5B 13 , 5C 2 имеют высокое значение маг­нитной индукции (1,6 Тл) и низкое значение коэрцитивной силы (32...35 мА/см). Аморфный сплав Co 66 Fe 4 (Mo, Si, В) 30 имеет сравни­тельно небольшое значение магнитной индукции (0,55 Тл), но высо­кие механические свойства (900... 1000 HV).

Высоким сопротивлением коррозии обладают только стабиль­ные аморфные сплавы. Так, для изготовления коррозионно-стойккх деталей используют металлические стекла на основе железа и никеля, содержащие не менее 3...5 % хрома и некоторые другие элементы. Критическая концентрация хрома, обеспечивающая стабильность аморфного сплава, определяется соотношением между легирующими элементами сплава и активностью коррозионной среды. Сопротивление металлических стекол коррозии снижают процессы, усиливающие химическую неоднородность, а именно:

· появление флуктуации химического состава; разделение исходной аморфной фазы на две другие аморфные фазы или фазы с другим химическим составом;

· переход аморфной фазы в двух- или многофазную смесь кри­сталлов разного химического состава;

· образование кристаллической фазы того же химического со­става, что и окружающая матрица.

Формирование и распространение полос сдвига на поверхности образца металлического стекла (Pd79Ag3.5P6Si9.5Ge2)


Под сканирующим электронным микроскопом хорошо видна ступенчатая структура полосы сдвига.


По краям трещин формируются аналогичные полосы сдвига, что приводит к разрушению вершины трещины и препятствует её дальнейшему росту.

Благодаря своей аморфной структуре металлические стекла могут быть прочными, как сталь, и пластичными, как полимерные материалы, они способны проводить электрический ток и обладают высокой коррозионной стойкостью. Такие материалы могли бы получить широкое распространение при изготовлении медицинских имплантатов и разнообразных электронных устройств, если бы не одно неприятное свойство: хрупкость. Металлические стекла, как правило, являются ломкими и неравномерно сопротивляются усталостным нагрузкам, что ставит под вопрос их надежность. Использование многокомпонентных аморфных металлов (композитов) решает эту проблему, однако для монолитных металлических стекол она до сих пор актуальна.

В рамках нового исследования , проведенного совместно учеными из Лаборатории Беркли и Калифорнийского технологического института, был найден способ повысить усталостную прочность объемных металлических стекол. Объемное металлическое стекло на основе палладия, подвергнутое усталостным нагрузкам, проявило себя ничуть не хуже, чем лучшие из композитных металлических стекол. Его усталостная прочность сравнима с этим показателем для широко используемых поликристаллических конструкционных металлов и сплавов, таких как сталь, алюминий и титан.

Под нагрузкой на поверхности палладиевого металлического стекла образуется полоса сдвига — локальная область значительной деформации, которая принимает ступенчатую форму. При этом по краям трещин, разделяющих «ступени», возникают такие же полосы сдвига, что притупляет вершины трещин и препятствует их дальнейшему распространению.

Палладий характеризуется высоким соотношением модулей объемного сжатия и сдвига , что скрадывает присущую стеклообразным материалам хрупкость, поскольку образование «многоуровневых» полос сдвига, препятствующих дальнейшему росту трещин, оказывается энергетически более выгодным, чем формирование крупных трещин, приводящих к быстрому разрушению образца. Вкупе с высоким

Металлические стекла, или аморфные сплавы, получают путем охлаждения расплава со скоростью, превышающей скорость кристаллизации. В этом случае зарождение и рост кристаллической фазы становятся невозможными и металл после затвердевания имеет аморфное строение. Высокие скорости охлаждения могут быть достигнуты различными методами, однако наиболее часто используется закалка из расплава на поверхности быстро вращающегося диска (рис. 177). Этот метод позволяет получить ленту, проволоку, гранулы, порошки.

Получение аморфной структуры в принципе возможно для всех металлов. Наиболее легко аморфное состояние достигается в сплавах Al, Pb, Sn, Си и др. Для получения металлических стекол на базе Ni, Со, Fe, Мп, Сг к ним добавляют неметаллы или полуметаллические элементы С, Р, Si, В, As, S и др. (аморфообразующие элементы). Аморфные сплавы чаще отвечают формуле М 80 Х 20 , где М - один или несколько переходных элементов, а X - один или несколько неметаллов или других аморфообразующих элементов (Fe 80 P 13 C, Ni 82 P 18 , Ni 80 S 20).

Рис. 177. Схема получения аморфных сплавов с помощью быстрого охлаждения из расплава: а - разливка на диск; б - разливка между двумя дисками; 1 - индуктор; 2 - расплав; 3 - тигель; 4 - диск; 5 - лента аморфного материала

Аморфное состояние металлов метастабильно. При нагреве, когда подвижность атомов возрастает, протекает процесс кристаллизации, что постепенно приводит металл (сплав) через ряд мета- стабильных в стабильное кристаллическое состояние. Механические, магнитные, электрические и другие структурно-чувствительные свойства аморфных сплавов значительно отличаются от свойств кристаллических сплавов. Характерной особенностью аморфных сплавов являются высокий предел упругости и предел текучести при почти полном отсутствии деформационного упрочнения.

Высокие механические свойства

Высокими механическими свойствами обладают аморфные сплавы на основе кобальта.

Аморфные сплавы нередко хрупки при растяжении, но сравнительно пластичны при изгибе и сжатии. Могут подвергаться холодной прокатке. Установлена линейная связь между пределом текучести и твердостью для сплавов на основе железа и кобальта. Прочность аморфных сплавов близка к теоретической. Это объясняется, с одной стороны, высоким
значением о т, а с другой - более низкими значениями модуля упругости Е (на 30-50 %) по сравнению с кристаллическими сплавами.

Аморфные сплавы на основе железа и содержащие не менее 3-5 % Сr обладают высокой коррозионной стойкостью. Хорошую коррозионную стойкость имеют и аморфные сплавы на основе никеля. Аморфные сплавы Fe, Со, Ni с добавками 15-25 % аморфообразующих элементов В, С, Si, Р используют как магнитно-мягкие материалы.

Группы аморфных сплавов

Магнитно-мягкие аморфные сплавы делят на три основные группы:

  1. аморфные сплавы на основе железа с высокими значениями магнитной индукции и низкой коэрцитивной силой (32-35 мА/см);
  2. железоникелевые сплавы со средними значениями магнитной индукции (0,75-0,8 Тл) и более низким значением коэрцитивной силы, чем у железных сплавов (6-7 мА/см);
  3. аморфные сплавы на основе кобальта, имеющие сравнительно небольшую индукцию насыщения (0,55 Тл), но высокие механические свойства (900-1000 HV), низкую коэрцитивную силу и высокое значение магнитной проницаемости. Вследствие очень высокого удельного электрического сопротивления аморфные сплавы характеризуются низкими потерями на вихревые токи - это их главное достоинство.

Магнитно-мягкие аморфные сплавы применяют в электротехнической и электронной промышленности (магнитопроводы трансформаторов, сердечников, усилителей, дроссельных фильтров и т. д.). Сплавы с высоким содержанием кобальта идут для изготовления магнитных экранов и магнитных головок, где важно иметь материал с высоким сопротивлением износу.

Область применения металлических стекол пока еще ограничена тем, что быстрым охлаждением (закалкой) из жидкого состояния их удается получить только в виде тонких лент (до 60 мкм) шириной до 200 мм и более или проволоки диаметром 0,5-20 мкм. Однако имеются широкие перспективы развития материалов этой группы.

Охлаждения?106 К/с). Быстрый теплоотвод достигается, если, по крайней мере, один из размеров изготовляемого образца достаточно мал (фольга, лента, проволока). Расплющиванием капли расплава между охлаждаемыми наковальнями получают фольгу шириной 15 - 25 мм и толщиной 40-70 мкм, а охлаждением на вращающемся барабане (диске) или прокаткой струи между двумя валками - ленту шириной 3-6 мм и толщиной 40-100 мкм. Выдавливанием расплава в охлаждённую могут быть изготовлены М. с. в виде проволоки.

Состав М. с.: = 80% переходных (Cr, Mn, Fe, Co, Ni, Zr, Pr и др.) или благородных металлов и ок. 20% поливалентных неметаллов (В, С, N, Si, P, Ge и др.), играющих роль стеклообразующих элементов. Примеры - бинарные сплавы (Au81Si19, Pd81Si19 и Fe80B20) и псевдобинарные сплавы, состоящие из 3-5 и более компонентов. М. с.- метастабильные системы, к-рые кристаллизуются при нагревании до темп-ры, равной ок. 1/2 темп-ры плавления.

Изучение М. с. позволяет исследовать природу металлич., магн. и др. св-в тв. тел. Высокая (приближается к теор. пределу для кристаллов) в сочетании с большой пластичностью и высокой коррозионной стойкостью делает М. с. перспективными упрочняющими элементами для материалов и изделий. Нек-рые М. с. (напр., Fe80B20) - ферромагнетики с очень низкой коэрцитивной силой и высокой магнитной проницаемостью, что обусловливает их применение в качестве магнитно-мягких материалов. Другой важный класс аморфных магн. материалов - сплавы редких земель с переходными металлами. Перспективно использование электрич. и акустич. св-в М. с. (высокое и слабо зависящее от темп-ры электрич. сопротивление, слабое вука).

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

МЕТАЛЛИЧЕСКИЕ СТЕКЛА

(метглассы) - разновидность аморфных металлов, аморфные сплавы с ме-таллич. типом проводимости, к-рые не имеют дальнего порядка в пространств, расположении атомов и характеризуются макроскопич. коэф. сдвиговой вязкости Па. Их изготавливают в виде плёнок, лент и проволок с помощью спец. техн. приёмов (закалка из расплава при типичных скоростях охлаждения ~10 в К/с, термич. напыление или в вакууме на охлаждаемую подложку и т. д.), к-рые ведут к быстрому затвердеванию сплавляемых компонентов в относительно узком температурном интервале около т. н. температуры стеклования T g .

M. с. обладают уникальным сочетанием высоких ме-ханич., магн., электрич. и коррозионных свойств .

M. с. исключительно тверды и обладают высокой прочностью на ; напр., s у для M. с. Fe 80 B 20 достигает 3,6-10° Н/м 2 (370кгс/мм 2) , что намного превосходит значение s у лучших сталей; по этой причине M. с. применяют для армировки в композиц. материалах (композитах).

По магн. свойствам M. с. подразделяются на два технологически важных класса. M. с. класса "ферромагнитный переходный металл (Fe, Со, Ni, в количестве 75-85%)-неметалл (В, С, Si, Р- 15-25%)" являются магнитно-мягкими материалами с незначительной коэрцитивной силой Н с ввиду отсутствия магн.-кристаллич. анизотропии ( макроскопич. магнитная анизотропия обусловлена при ненулевой магнитострикции внутр. или внеш. напряжениями, к-рые могут быть снижены при отжиге, а также наведённой анизотропией в расположении соседних атомов). Магнитная атомная структура осн. таких систем может быть представлена в виде совокупности параллельно ориентированных локализованных магн. моментов при отсутствии трансляц. периодичности в их пространств, размещении, причём благодаря эффектам локального окружения магн. ионов по своей величине могут флуктуировать (см. Аморфные магнетики). M. с. этого класса имеют почти прямоугольную петлю гистерезиса магнитного с высоким значением индукции насыщения B s , что в сочетании с высоким уд. электрич. сопротивлением r и, следовательно, низкими потерями на делает M. с. по сравнению с электротехн. сталями более предпочтительными при применении, напр., в трансформаторах .

Сравнительные характеристики нек-рых кристаллич. и зарубежных аморфных магнитно-мягких сплавов (а также одного из отечеств. M. с. 94 ЖСР - А на основе железа ) приведены в таблице.

M. с. класса "редкоземельный элемент - переходный d- металл", обычно приготавливаемые в виде плёнок с помощью катодного распыления, в ряде случаев (Gd - Со, Gd - Fe) обнаруживают коллинеарную ферромагн. структуру со свойствами, перспективными для создания устройств с памятью на цилиндрических магнитных доменах (ЦМД), напр, низкой намагниченностью насыщения M s и высокой анизотропией, перпендикулярной плоскости плёнки . В большинстве др. случаев сильная локальная одноионная со случайным распределением осей лёгкого намагничивания, присущая редкоземельным ионам с ненулевым орбитальным моментом, обычно приводит в M. с. этого класса к хао-тич. неколлинеарной структуре типа спинового стекла.

Сравнительная характеристика некоторых магнитно-мягких кристаллических и аморфных сплавов (при 300 К) .


* T с - температура перехода в парамагнитное состояние (Кюри точка).

** Метгласс - зарегистрированная торговая марка корпорации Allied Chemical Corporation.

Из электрич. свойств M. с. наиб, существенны большая величина остаточного электрич. сопротивления (обычно в 2-4 раза больше, чем у кристаллич. аналогов) и малое значение температурного коэф. сопротивления (вне температурного интервала протекания процессов структурной релаксации и кристаллизации).

Ряд M. с. класса "переходный металл - неметалл" с добавками Cr и P обнаруживает исключит, коррозионную стойкость в агрессивных средах, превышающую на неск. порядков стойкость нержавеющих сталей . Неупорядоченность атомной структуры M. с. является также причиной высокой стойкости их свойств к воздействию радиации.

Аморфная структура M. с., являясь метастабильной, обладает очень большим временем жизни. Напр., оценки временного интервала эксплуатации, определяемого началом процесса кристаллизации, дают для одного из наименее стабильных M. с.ок. 550 лет при 175 0 C и 25 лет при 200 0 C .

Своеобразие физ. свойств M. с. является следствием аморфности их структуры (её хим. гомогенности, отсутствия межзёренных границ и линейных дефектов типа дислокаций). На рентгено-, электроне- и нейтроно-граммах M. с. имеется неск. диффузных гало, к-рые описываются с помощью ф-ции радиального распределения атомов (ФРРА) , где р(г) - усреднённая атомная на расстоянии г от случайного, выбранного за начало отсчёта атома (рис.). ФРРА не даёт полной информации о расположении атомов в трёхмерном пространстве, однако в сочетании с др. методами (исследованием тонкой структуры рентг. спектров поглощения, аннигиляцией позитронов и т. д.) она даёт возможность отобрать те структурные модели M. с.,

Нормированная функция радиального распределения атомов - средняя атомная плотность вещества) для аморфного железа .


к-рые лучше всего соответствуют эксперим. данным. Сходство ФРРА для аморфного и жидкого состояний, особенно на больших и ср. расстояниях, позволило на первых порах использовать для одноатомных M. с. модель случайной плотной упаковки твёрдых сфер, в своё предложенную Дж. Д. Берналом (J. D. Bernal) для одноатомных жидкостей, а для M. с. типа "металл - неметалл" - модификацию этой модели , согласно к-рой небольшие атомы неметалла заполняют большие пустоты ("дырки" Бернала) в случайной плотной упаковке атомов металла и не соседствуют друг с другом. Однако данные дифракц. экспериментов (напр., расщепление второго пика ФРРА, отсутствующее в жидких металлах) говорят о существовании в M. с. ближнего атомного порядка. Расчёты термодинамич. устойчивости атомных микрокластеров и структурного фактора для M. с. указывают на предпочтительность для них модели ближнего порядка , в к-рой осн. элементом структуры является икосаэдр - правильный двадцатигранник, получаемый упаковкой 12 слегка искажённых тетраэдров и обладающий 12 вершинами с 5 сходящимися рёбрами, через к-рые можно провести 6 осей симметрии пятого порядка.

Хотя икосаэдрич. не может быть элементом построения кристалла, поскольку невозможно плотно заполнить трёхмерное путём периодич. трансляций икосаэдра без появления несогласованности в структуре, веским аргументом в пользу икосаэдрич. ближнего порядка в M. с. является также недавнее открытие в сплаве Al 86 MnI 4 принципиально нового типа атомной структуры твёрдых тел - квазикристаллич. структуры с икосаэдрич. дальним порядком (см. Квазикристалл). Подобно M. с., квазикристаллы получаются быстрой закалкой из расплава /яятт. тгля оппепелённых составов в системах

Xf_ Fe), но, в отличие от M. с., дают на рентгенограммах когерентные брэгговские рефлексы, соответствующие симметрии пятого или даже десятого порядка . Нек-рыеМ. с. (напр., Pd 60 U 20 Si 20 ) после отжига переходят в квазикристаллич. состояние, оона-руживая тем самым тесную генетич. связь структурного состояния M. с. и квазикристаллич. состояния.

Лит -1)Петраковский Г. А., Аморфные магнетики, "УФН","1981,т. 134, с. 305; 2) Люборский Ф. В., Перспективы применения аморфных сплавов в магнитных устройствах, в кн.· Магнетизм аморфных систем, пер. с англ., M., Ii)Sl; 3)Хандрих К., Кобе С., Аморфные ферро- и ферримагнетики, пер. с нем., M., 1982; 4) Крапошин В. С., Линецкий Я. Л., Физические свойства металлов и сплавов в аморфном состоянии, в кн.: Итоги науки и техники. Металловедение · термическая обработка, т. 16, M., 1982; 5) Металлические стекла, пер. с англ., M., 1984; 6) Amorphous metallic alloys ed by F. Luborsky, L.- , 1983; 7) Аморфные сплавы, M., 1984; 8) Преображенский A. А., Бишард E. Г., Магнитные материалы и , 3 изд., M 1986; 9) Iсhikawа Т., Electron diffraction study of the local atomic arrangement in amorphous iron and nickel films, "Phys. Stat. Sol. (a)", 1973, v. 19, N, 2, p. 707; 10) Polk D. E The structure of glassy metallic alloys, "Acta Metall.", 1972, v. M, № 4 r 485; 11) Sасhdev S., Nelsоn D. R., Order m metallic glasses and icosahedral crystals, "Phys. Rev. B", 1985, v. 32, № 7 r 4592" 12) Sheсhtman D. и др., Metallic phase with long-range orientational order and no translational symmetry, "Phys. Rev. Lett.", 1984, v. 53, M 20, p. 1951; 13) Levine D., Steinhardt P. J., Quasicrystals. 1-2, "Phys. Rev. B", 1986 v. 34, MJ 2, p. 596; 14) Heльсон Д. Р., Квазикристаллы пер с англ., "В мире науки", 1986, № 10, с. 19; 15) Po-о h S J., Drehmаn A. J., Lawless K. R., Glassy to icosahedral phase transformation in Pd - U - Si alloys, "Phys. Rev Lett ", 1985, v. 55, Mi 21, p. 2324. M. В. Медведев.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

В продолжение темы:
Ленточный фундамент

Спагетти с соусом из рыбной консервы — этот недорогой рецепт мы увидели на пачке купленных нами спагетти. Рецепт показался нам очень простым, ну и мы решили попробовать...

Новые статьи
/
Популярные